• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New Constraints on the Magmatic System beneath Newberry Volcano from the Analysis of Active and Passive Source Seismic Data and Ambient Noise

Heath, Ben 14 January 2015 (has links)
Using joint P-wave seismic tomography, receiver functions, and ambient noise we image the magmatic structure beneath Newberry Volcano, located near Bend, Oregon. Use of active source and teleseismic events in a joint tomographic inversion provides the ray crossings necessary to resolve a low velocity body around 4 km depth. Receiver functions show large lateral heterogeneity and are consistent with the location of a low velocity body derived from the tomography but require a larger low velocity anomaly. Ambient noise autocorrelations are used to image a low velocity reflector, located at ~3 km depth, shallower than the imaged low velocity body recovered using tomography and receiver functions. Ultimately, our results reveal a magma chamber at 3-4 km depth beneath Newberry caldera, with an overlying partially molten sill at ~3 km depth. These results show the usefulness of dense seismometer deployments over volcanoes.
2

Les programmes de recherche et d'éducation dans les bibliothèques de recherche indépendantes américaines : l'exemple de la Newberry Library /

Lauby, Aurélie. January 2001 (has links) (PDF)
Mémoire d'étude (DCB) : Ecole nationale supérieure des sciences de l'information et des bibliothèques : Villeurbanne (France) : 2001. / Notes bibliogr.
3

Viscosity, deformation and permeability of bubbly magma : applications to flow and degassing in volcanic conduits /

Rust, Alison C. January 2003 (has links)
Thesis (Ph. D.)--University of Oregon, 2003. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 190-205). Also available for download via the World Wide Web; free to University of Oregon users.
4

The Upper Crustal P-wave Velocity Structure of Newberry Volcano, Central Oregon

Beachly, Matthew William, 1986- 06 1900 (has links)
xii, 98 p. : ill. (some col.) / The upper-crustal seismic-velocity structure of Newberry volcano, central Oregon, is imaged using P-wave travel time tomography. The inversion combines a densely-spaced seismic line collected in 2008 with two USGS seismic experiments from the 1980s. A high-velocity ring (7 km EW by 5 km NS) beneath the inner caldera faults suggests an intrusive ring complex 200 to 500 m thick. Within this ring shallow low velocities (<2 km depth) are interpreted as caldera fill and a subsided block. High velocities below 2 km depth could be intrusive complexes. There appears to be a low-velocity body at 3-6 km depth beneath the center of the volcano. This region is poorly resolved in the inversion because the ray paths bend around the low-velocity body. The 2008 data also recorded a secondary arrival that may be a delayed P-wave interacting with the low-velocity body. / Committee in charge: Emilie E.E. Hooft, Chairperson; Douglas R. Toomey, Member; Katharine V. Cashman, Member
5

Investigating the Volume and Structure of Porosity in Fractured and Unfractured Rock from the Newberry Volcano, Oregon: An Evaluation and Comparison of Two- and Three- Dimensional Methods

Roth, Justin Michael January 2014 (has links)
Porosity is a fundamental characteristic of rock critical to its mechanical and hydrologic behavior, yet a study of the open and accumulated healed porosity of nine core samples from Newberry Volcano shows that different measurement methods produce significantly different estimates of pore volume and structure. This study compares traditional 2D point count, petrographic image analysis, and 3D x-ray Micro Computed Tomography (micro CT) measurement of porosity primarily derived from fracture slip and dilation. The set of measurements quantifies the discrepancy among measurement methods and provides a basis for assessing how this uncertainty depends on geologic factors including the stage of fracture development, and the size and connectivity of the pores. This comparison reveals that detailed petrographic mapping provides the most accurate characterization of fracture porosity, and its history of development, owing to its high spatial resolution and accuracy of phase identification as well as insights afforded from mineralogic and textural relationships. However, this analysis lacks the three-dimensional characterization necessary to determine pore shape and interconnectedness, especially in highly anisotropic and heterogeneous fracture porosity. Micro CT does characterize the three dimensionality of pores, and thus although it consistently underestimates porosity due to non-uniqueness of phase densities and limitations in resolution, and is difficult to post process, this method can usefully augment the petrographic analysis. High resolution mapping of petrographic thin sections also provides a means to characterize the roughness of fracture surfaces across multiple cycles of slip, related dilation, and healing. Analysis of 19 slip events on a small, early stage fracture experiencing less than mm-scale slip, indicates that this roughness is preserved across multiple slip events and is consistently associated with dilation recorded by the accumulation of layers of precipitated cement. Initially, characteristic length scales intrinsic to rock such as the primary grain and pore size distribution of the &gt; 0.2 mm size fraction significantly influence the roughness of fractures, until the dominant mechanism of fracture growth becomes linkage among macroscopic fractures. This correlation among primary rock characteristics such as grain size, fracture roughness, repeated fracture slip, and dilation provides a potential method to assess the key attributes promoting dilatant, self-propping fracture slip necessary for successful stimulation to generate an Enhanced Geothermal System. Comparison to more developed fractures characterized by the development of fault rock suggest such stimulation is most successful for fractures sustaining small slip of a few millimeters or less during single slip events. / Geology
6

Decoupling Tree-Ring Signatures of Climate Variation, Fire, and Insect Outbreaks in Central Oregon

Pohl, Kelly A., Hadley, Keith S., Arabas, Karen B. January 2006 (has links)
Dendroecological methods play a critical role in developing our understanding of forest processes by contributing historical evidence of climate variability and the temporal characteristics of disturbance. We seek to contribute to these methods by developing a research protocol for decoupling radial-growth signatures related to climate, fire, and insect outbreaks in central Oregon. Our methods are based on three independent, crossdated tree-ring data sets: 1) a 545-year tree-ring climate reconstruction, 2) a 550-year fire history, and 3) a 250-year pandora moth outbreak history derived from host (Pinus ponderosa) and non-host (Abies grandis-Abies concolor) tree-ring chronologies. Based on these data, we use visual criteria (marker and signature rings), statistical comparisons, and Superposed Epoch Analysis (SEA) to identify the timing of growth anomalies and establish the temporal relationships between drought, climate variation (ENSO and PDO), fire events, and pandora moth (Coloradia pandora) outbreaks. Our results show pandora moth outbreaks generally coincide with periods of below-average moisture, whereas fire in central Oregon often follows a period of wetter than average conditions. Fire events in central Oregon appear to be related to shifts in hemispheric climate variability but the relationship between fire and pandora moth outbreaks remains unclear.

Page generated in 0.0226 seconds