Spelling suggestions: "subject:"newmarket"" "subject:"newmarkets""
1 |
One-way Coupled Hydroelastic Analysis of Aluminum Wedge Under SlammingKalluru, Mallikarjun 20 December 2017 (has links)
The concept of using aluminum as the primary construction material for high speed ships and the hydroelastic behavior of the structure is widely gaining importance as a significant research topic in naval architecture. Aluminum is lighter than steel and hence can be predominantly used in high speed crafts which experiences significant slamming. This thesis work is focused on wedge shaped models. Free fall wedge impact is studied and a FORTRAN 90 computer program is developed to estimate the structural response of the wedge experiencing slamming by the use of matrix methods, finite element techniques and Newmark-Beta numerical time integration methods. The numerical solution is validated by comparison with the static solution. The theoretical hydrodynamic pressures which are used as input for this work was originally developed by using a flat cylinder theory [26]. The wedge drop at 0.6096 m (24 inch) drop height with an impact veloc- ity of v=3.05 m/s is based as the premise and the experimental pressure distributions measured by the pressure-transducers and the theoretical pressure predictions are used as inputs and the structural response is derived. Additionally, the response is compared for three different plate thicknesses and the results are compared against each other. The maximum deflection is comparable to the deflection evaluated from the experiment and tends to attain convergence as well. As the plate thickness reduces there tends to be a significant rise in the deflection values for the wedge plate, in the manner that when the plate thickness is halved there is a deviation of more than 75% in the deflection values as such.
|
2 |
The Dynamic Analysis of a Composite Overwrapped Gun Barrel with Constrained Viscoelastic Damping Layers Using the Modal Strain Energy MethodHall, Braydon Day 01 May 2013 (has links)
The effects of a composite overwrapped gun barrel with viscoelastic damping layers are investigated. Interlaminar stresses and constrained layer damping effects are described. The Modal Strain Energy method is developed for measuring the extent to which the barrel is damped. The equations of motion used in the finite element analysis are derived. The transient solution process is outlined. Decisions for selected parameters are discussed. The results of the finite element analyses are presented using the program written in FORTRAN. The static solution is solved with a constant internal pressure resulting in a calculated loss factor from the Modal Strain Energy Method. The transient solution is solved using the Newmark-Beta method and a variable internal pressure. The analyses conclude that strategically placed viscoelastic layers dissipate strain energy more effectively than a thick single viscoelastic layer. The optimal angle for maximizing the coefficient of mutual influence in a composite cylinder is not necessarily the optimal angle when viscoelastic layers are introduced between layers.
|
Page generated in 0.0206 seconds