• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 187
  • 58
  • 50
  • 33
  • 22
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 453
  • 453
  • 453
  • 70
  • 68
  • 67
  • 58
  • 54
  • 54
  • 53
  • 52
  • 48
  • 48
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Genom enterovirů z dětské stolice: kombinace next-generation a klasického Sangerova sekvenování / Enterovirus genomes in stool: a combination of the next generation and Sanger sequencing

Holková, Kateřina January 2014 (has links)
This diploma thesis deals with a development of a strategy for data evaluation generated by next-generation sequencing. Using bioinformatics tools such as Galaxy, Velvet and Enterovirus genotyping tool new aproach of data processing was optimized. There were 22 samples analyzed which of 10 were grown on cell culture. Remaining 12 were obtained from real stool samples. All samples were taken from children at the highest genetic risk of type 1 diabetes. All of them were enterovirus positive. Enteroviruses and their following infections have been suspecting to be involved in ehiology of type 1 diabetes for a long time. That's a disease resulting to an absolut insulin deficiency due to autoimmune destruction of pancreatic beta cells. Genetic components seems to be relatively well defined (the HLA, INS, STLA4, PTPN22, CTLA4, IFIH1 and numerous other genes), the environmental part of the etiology remains obscured. We were able to assemble 22 genomes de novo. However, there were numerous gaps among the particular contigs. For the first nine samples these gaps were complemented by Sanger sequencing. Nine full-length genomes were assempled this way. The main contribution of this work was to create a universal process of analyzing data from next-generation sequencing. This has already been using for further...
72

Relationship between American Fisheries Society Standard Fish Sampling Techniques and Environmental DNA (eDNA) for Characterizing Fish Presence, Relative Abundance, Biomass, and Species Composition in Arizona Standing Waters

Perez, Christina R., Perez, Christina R. January 2016 (has links)
Recently, examination of deoxyribonucleic acids in water samples (environmental DNA or eDNA) has shown promise for identifying fish species present in water bodies. In water, eDNA arises from bodily secretions such as mucus, gametes, and feces. I investigated whether eDNA can be effective for characterizing fish presence, relative abundance, biomass, and species composition in a large Arizona reservoir (Theodore Roosevelt Lake) and 12 small Arizona (<24 ha) waterbodies. Specifically, I compared fish presence, relative abundance (catch per unit effort [CPUE]), biomass (biomass per unit effort [BPUE]), and species composition measured through eDNA methods and established American Fisheries Society (AFS) standard sampling methods in Theodore Roosevelt Lake and 12 small waterbodies. Environmental DNA sampling resulted in detection of Gizzard Shad Dorosoma cepedianum at a higher percentage of sites than boat electrofishing, both in spring and fall. Contrarily, gill nets detected Gizzard Shad at more sites than eDNA for both spring and fall sampling in Lake Roosevelt. Boat electrofishing and gill netting detected Largemouth Bass Micropterus salmoides at more sites than eDNA, with the exception of fall gill net sites which equally detected Largemouth Bass at sites within Lake Roosevelt. Environmental DNA detected Largemouth Bass and Bluegill Lepomis macrochirus at more Arizona small lakes than detection with established gear methods. I observed no relationship between relative abundance and biomass of Largemouth Bass and Gizzard Shad measured by established methods and their DNA copies at individual sites or by lake section in Lake Roosevelt. Likewise, I found no relationship between relative abundance and biomass of Largemouth Bass and Bluegill measured by established methods and their DNA copies across 12 small waterbodies. Plot analysis conceivably illustrated that reservoir-wide catch composition (numbers and total weight of fish [g]) achieved through a combination of gear types (boat electrofishing + gill netting) for Largemouth Bass and Gizzard Shad was slightly similar to the proportion of total eDNA copies of each species for both spring and fall field sampling. Likewise, spring and fall gill net surveys somewhat portrayed total catch composition (numbers and total weight of fish [g]) of Largemouth Bass and Gizzard Shad similar to the proportion of total eDNA copies of each species. The exception was the total lack of similarity illustrated between proportions of fish caught in spring and fall boat electrofishing and total eDNA copies of each species in Lake Roosevelt. However, the deceptive similarity of all the plots were not present in the chi-square analysis with the exception of fall gill net surveys in Lake Roosevelt. In addition, eDNA did reflect the relative proportions of Largemouth Bass and Bluegill in total catch composition in some, but not all of 12 small Arizona waterbodies. The ease of eDNA sampling over established fish sampling makes it appealing to natural resource managers. Compared to current established fish sampling methods, eDNA sampling can be less laborious, less time consuming, and more cost effective. Environmental DNA sampling may be useful in sites that have difficult access such as remote sites. However, evaluation of eDNA is necessary to identify limitations and benefits in fish monitoring programs. Furthermore, field sampling protocols, filtration, DNA extraction, primer design, and DNA sequencing methods need further refinement and testing before incorporation into standard fish sampling surveys.
73

RNA CoMPASS: RNA Comprehensive Multi-Processor Analysis System for Sequencing

Xu, Guorong 02 August 2012 (has links)
The main theme of this dissertation is to develop a distributed computational pipeline for processing next-generation RNA sequencing (RNA-seq) data. RNA-seq experiments generate hundreds of millions of short reads for each DNA/RNA sample. There are many existing bioinformatics tools developed for the analysis and visualization of this data, but very large studies present computational and organizational challenges that are difficult to overcome manually. We designed a comprehensive pipeline for the analysis of RNA sequencing which leverages many existing tools and parallel computing technology to facilitate the analysis of extremely large studies. RNA CoMPASS provides a web-based graphical user interface and distributed computational pipeline including endogenous transcriptome quantification and additionally the investigation of exogenous sequences.
74

Phylogenetics and Mating System Evolution in the Southern South American Valeriana (Valerianaceae)

Gonzalez, Lauren A 13 August 2014 (has links)
Species of Valerianaceae in South America represent one of the best examples of rapid diversification on a continental scale. The phylogeny of Valerianaceae has received a lot of attention within the last 10 years, but relationships among the South American species are fairly unresolved. Results from previous studies have not been well resolved with traditional genetic markers, most likely due to its recent and rapid radiation. Species in this clade exhibit a variety mating systems and inflorescence types. For the first part of this research I used several traditional plastid markers, and 3 new low copy nuclear markers to better resolve the phylogeny and then explore mating system evolution within the clade. For the second part of this research I collected high-throughput “next-generation” genomic sequence data from reduced representation libraries obtained using genotyping-by-sequencing (GBS) protocols, along with several phylogenetic methods, to try to further resolve the phylogeny of this group.
75

Overcoming the Current Limitations of Next-Generation Sequencing with New Methods for Local Assembly of Genomes and High-Specificity Rare Mutation Detection

Preston, Jessica 23 February 2016 (has links)
The relatively low cost of Next-Generation Sequencing (NGS) has enabled researchers to generate large amounts of sequencing data in order to identify disease-causing mutations and to assemble simple genomes. However, NGS has inherent limitations due to the short DNA read lengths and high error rate associated with the technique. The short read lengths of NGS prevent the assembly of genomes with long stretches of repetitive DNA, and the high error rate prevents the accurate detection of rare mutations in heterogeneous populations such as tumors and microbiomes. I have co-developed new NGS methods to overcome these challenges. In order to increase the effective read length of NGS reads, local de novo assembly of short reads into long contigs can be achieved through the use of Paired-End Restriction-site Associated DNA Sequencing (RAD-PE-Seq). With the RAD-PE method, I sequenced a stickleback fosmid and generated contigs with an N50 length of 480 nucleotides. In order to eliminate false-positive mutations caused by the high error rate of NGS, the Paired-End Low Error Sequencing (PELE-Seq) method was developed, which uses numerous quality control measures during the sequencing library preparation and data analysis steps in order to effectively eliminate sequencing errors. Control testing of the PELE-Seq demonstrates that the method completely eliminates false-positive mutations at sequencing read depths below 20,000X coverage, compared to a ~20% false-positive rate obtained with previous methods. The high accuracy of the PELE-Seq method allows for the detection of ultra-rare mutations in a genome, which was previously impossible with NGS. This dissertation includes previously published and unpublished co-authored material.
76

Identifizierung von Patientinnen und Patienten mit der hereditären Form des Mamma- und Ovarialkarzinoms mittels Next-Generation-Sequencing-(NGS)-Technologie / Identification of patients with hereditary breast and ovarial cancer with next generation technology

Smogavec, Mateja 26 June 2019 (has links)
No description available.
77

Evaluation of next-generation sequencing as a tool for determining the presence of pathogens in clinical samples

Kokkonen, Alexander January 2019 (has links)
Metagenomic sequencing is an increasingly popular way of determining microbial diversity from environmental and clinical samples. By specifically targeting the 16S rRNA gene found in all bacteria, classifications of pathogens can be determined based on the variable and conserved regions found in the gene. Metagenomic sequencing can therefore highlight the vast difference in microbiological diversity between culture-dependent and culture-independent methods. Today, this has expanded into various next-generation sequencing platforms which can provide massively parallel sequencing of the target fragment. One of these platforms is Ion-torrent, which can be utilized for targeting the 16S rRNA gene and with the help of bioinformatics pipelines be able to classify pathogens using the bacteria’s own variable and conserved regions. The overall aim of the present work is to evaluate the clinical use of Ion-torrent 16S ribosomal RNA sequencing for determining pathogenic species from clinical samples, but also to set up a pipeline for clinical practice. Optimal DNA-extraction and quantification methods were determined towards each evaluated sample-type and DNA-eluates were sent for 16S rRNA Sanger and Next-generation sequencing. The result indicated that the next-generation sequencing shows a concordance in results towards the culturing-based method, but also the importance of experimental design and effective quality trimming of the NGS data. The conclusion of the project is that the Ion-torrent pipeline provided by the Public Health Agency of Sweden shows great promise in determining pathogens from clinical samples. However, there is still a lot of validation and standardisations needed for the successful implementation into a clinical setting.
78

Identificação da etiologia da deficiência intelectual esporádica por sequenciamento de exomas de afetados e seus pais / Elucidation of sporadic intellectual disability etiology by exome sequencing of affected individual and their parents

Carneiro, Thaise Nayane Ribeiro 20 December 2016 (has links)
Deficiência intelectual (DI), associada ou não a outras alterações congênitas, é a razão mais frequente de procura por aconselhamento genético pelas famílias. Até alguns anos atrás, a realização de cariótipo, triagem para doenças metabólicas e fra(x) elucidavam apenas &sim;40% dos casos de pacientes com DI idiopática. Com o surgimento de arrays genômicos, as causas moleculares por trás de outros &sim;20% dos quadros de DI foram elucidadas; porém, mesmo com esse avanço, muitos pacientes ainda permanecem sem causa molecular clara que justifique o fenótipo. O sequenciamento do exoma (WES) é hoje um dos recursos disponíveis para o diagnóstico e possível elucidação das causas genéticas por trás da deficiência intelectual idiopática, abrindo caminho também à identificação de novos genes. O presente trabalho realizou o sequenciamento de exoma de 8 probandos que tinham em comum a deficiência intelectual esporádica, acompanhada ou não de outros sinais clínicos, e de seus genitores não afetados (trios). Esses pacientes foram previamente triados para a síndrome do X frágil, e submetidos a exame de array CGH para investigação de perdas e ganhos de segmentos cromossômicos, ambos com resultados negativos. O objetivo desse estudo foi detectar alterações e possivelmente novos genes associados com a DI, usando pipelines de padrões de herança mendeliano. Treze alterações em 9 genes foram detectadas por sequenciamento de exoma e confirmadas por sequenciamento Sanger: 8 mutações bialélicas em genes recessivos (TBC1D24, ADAMTSL2, NALCN, VPS13B), uma ligada ao X (MID1), e 4 alterações de novo (RYR2, GABBR2, CDK13, DDX3X); 5 dessas alterações ainda não haviam sido descritas nos bancos de dados consultados, caracterizando mutações novas. Dos 8 trios, em 5 identificamos alterações moleculares provavelmente responsáveis pelos quadros apresentados; dois desses casos foram em genes recessivos (mutações homozigotas ou em heterozigose composta) e potencialmente teriam sido detectados mesmo se apenas os probandos houvessem sido sequenciados. Para as alterações em heterozigose, porém, a avaliação dos genitores e constatação de status de novo da mutação foram importantes para avaliar o impacto da variante. Esse trabalho resultou em uma taxa de diagnóstico de 62,5%; mesmo considerando o pequeno tamanho da amostra, esse valor está bem acima dos 15-30% relatados na literatura quando essa metodologia é utilizada para o estudo de casos esporádicos de DI. Em dois casos, mutações foram identificadas em genes que só foram descritos como mutados recentemente e que ainda não são considerados genes de deficiência intelectual no OMIM: o gene CDK13 foi descrito como mutado em pacientes de uma única coorte com malformação cardíaca congênita (sindrômica ou não), porém sua contribuição para coortes de DI ainda não foi investigada. O gene GABBR2, identificado mutado em heterozigose em um dos nossos pacientes, já havia sido considerado um candidato potencial para DI, mas apenas 2 trabalhos detectaram mutações nesse gene entre pacientes com DI e epilepsia. Os resultados aqui apresentados substanciam o papel desses genes como implicados na DI sindrômica de herança autossômica dominante, e devem contribuir para serem considerados genes OMIM de deficiência intelectual / Intellectual disability (ID), associated or not with other congenital abnormalities, is the most frequent reason for families to seek genetic counseling. Until some years ago, karyotyping, metabolic disease and FRAXA screening elucidated only &sim;40% of patients with idiopathic ID. Importantly, with the introduction of genomic arrays, the molecular cause behind a further &sim;20% of ID cases was determined; however, despite this improvement, many patients are still not provided with a clear molecular explanation and cause for their phenotype. Nowadays, whole exome sequencing (WES) is one of the methods available for diagnosis and a further means of possible elucidation of the genetic causes of idiopathic intellectual disability; in many cases this method also allows identification of genes that have not been previously related to ID. In the present project, we sequenced the exome (WES) of 8 sporadic patients that all had ID, with or without other clinical signs, and their unaffected parents (trios); these patients had been previously screened for fragile X syndrome and for losses and gains of chromosomal segments by array CGH, both with negative results. The objective of this study was to detect mutations and possibly new genes associated with ID, using pipelines for Mendelian inheritance patterns. Thirteen mutations in 9candidate genes were detected by exome sequencing and confirmed by Sanger sequencing, among them 8 biallelic mutations in autossomal recessive genes (TBC1D24, ADAMTSL2, NALCN, VPS13B), one mutation in an X-linked gene (MID1), and 4 de novo alterations (RYR2, GABBR2, CDK13, DDX3X); 5 of these mutations had not been described in the databases consulted characterizing new variants. Of the 8 trios, we obtained a probable diagnosis of the molecular alteration responsible for the presented phenotypes in 5. Two of these cases were in recessive genes (homozygous mutations or compound heterozygous), and the mutations would probably have been detected even if only the probands had been sequenced. However, for the heterozygous mutations, the assessment of the parents and the confirmation of the de novo status of the mutation was important to evaluate the impact of the variant. This work resulted in a diagnosis rate of 62.5%; even considering the small sample size, this value is well above the average of 15-30% reported in the literature when the methodology used for the study of ID sporadic cases is considered. In two cases, mutations were detected in genes only recently described as mutated and which are not considered yet as OMIM ID genes. The CDK13 gene had already been described as mutated in a single cohort of patients with syndromic congenital heart defects, but its contribution to ID cohorts has not been established. The GABBR2 gene, where a heterozygous mutation was identified in the patient, had already been considered a potential candidate for ID; there are only 2 studies that detected mutations in this gene among patients with ID and epilepsy. This contribution may pave the way to establishing GABBR2 and CDK13 as causations of ID and acceptance by OMIM
79

Investigação por sequenciamento do exoma completo da etiologia genética da deficiência intelectual familial / Investigating the genetic etiology of familial intellectual disability by whole exome sequencing

Costa, Silvia Souza da 03 December 2018 (has links)
Deficiência intelectual (DI) é um distúrbio frequente do neurodesenvolvimento que afeta ~1% da população mundial e a causa genética é desconhecida em grande parte dos casos. O sequenciamento de exoma é uma ferramenta valiosa na elucidação da etiologia da DI e foi utilizada neste trabalho para investigar 25 famílias com dois ou mais indivíduos afetados. Nosso objetivo foi identificar novos genes ou variantes em genes já conhecidos que pudessem explicar a DI nessas famílias. Identificamos variantes que podem explicar a DI em nove das 25 famílias (36%); três variantes em genes já associados a DI de herança autossômica dominante (SETBP1, MED13L e MBD5), duas em um gene já associado a DI de herança autossômica recessiva (CDK5RAP2 - heterozigose composta) e cinco em genes de herança ligada ao X (UBE2A, MED12, SCL6A8, ARHGAP4 e PHF6). Nenhuma dessas variantes havia sido previamente descrita. O gene ARHGAP4 aparece como um novo candidato e novos estudos serão necessários para estabelecer seu papel na DI. No gene PHF6, a variante identificada mapeia na região 3´UTR e potencialmente interfere com as interações de miRNA reguladores. A variante no gene SETBP1, que apresenta padrão de herança dominante, foi detectada em duas irmãs, indicando que um genitor seria portador obrigatório; essa variante foi detectada em 0,13% das células de sangue periférico da mãe com a utilização da técnica de PCR digital. Essa variante em SETBP1, juntamente com as variantes em MED13L e no gene MBD5, salientam a contribuição de mosaicismo gonadal assim como genitor também com quadro clínico na DI de herança autossômica dominante. A repetição da DI nas irmandades foi essencial para determinar a patogenicidade das variantes identificadas do tipo missense. Dois irmãos portadores de variante missense ainda não descrita no gene UBE2A apresentavam quadro clínico atipicamente leve, trazendo dúvidas sobre a patogenicidade dessa variante; o estudo funcional do gene demonstrou que a mutação de fato prejudicava a função da proteína. Embora estudos funcionais sejam o padrão-ouro para determinar a patogenicidade de uma variante, é difícil sua implementação na rotina diagnóstica / Intellectual deficiency (ID) is a common neurodevelopmental disorder affecting ~1% of the world population, and in which the genetic underlying condition is not determined in many cases. Whole exome sequencing is a valuable tool to elucidate ID etiology and was used in the present work to investigate 25 families with two or more affected individuals. Our main goal was to identify either new genes or variants in already known genes that might explain ID in these families. We detected variants in nine out of the 25 families (36%), with three variants in autossomal dominant ID genes (SETBP1, MED13L e MBD5), two in an autossomal recessive ID gene (compound heterozygote - CDK5RAP2) and five in X-linked ID genes (UBE2A, MED12, SCL6A8, ARHGAP4 e PHF6). None of the variants had been previously described. ARHGAP4 emerged as a new candidate gene and further studies are needed to establish its role in ID. In PHF6, the identified variant mapped to the 3\'UTR region and potentially interferes with miRNA interactions. The variant in SETBP1, which segregates as an autossomal dominant, is present in two sisters, indicating that one parent is an obligate carrier; in fact, the variant was only identified in 0.13% of the mother\'s blood cells after using digital PCR. This case, together with the variants in MED13L and MBD5, highlight the contribution of gonadal mosaicism and affected parent in the autossomal dominant ID. The ID reccurrence in the sibships was essential to determine the putative pathogenicity of missense variants. Two affected brothers carrying a novel missense variant in UBE2A exhibited an atypically mild phenotype, and raised questions regarding the pathogenicity of this variant; associated functional studies showed that the variant impairs gene function. Although functional studies are the gold standard to determine a variant pathogenicity, its implementation as a diagnostic routine is still difficult
80

Identificação de moduladores genéticos em pacientes com anemia aplástica por sequenciamento de nova geração / Genetic screening of patients with aplastic anemia by targeting sequencing

Rodrigues, Fernanda Gutierrez 16 November 2017 (has links)
A fisiopatologia das síndromes de falência da medula óssea (FMO) está relacionada a mecanismos adquiridos de destruição das células-tronco hematopoeiticas na medula ou a defeitos constitucionais em genes fundamentais para o reparo do DNA e manutenção dos telômeros. A anemia aplástica (AA), o protótipo das doenças de FMO, pode ter etiologia adquirida ou constitucional. A avaliação genética de pacientes com AA adquirida tem como objetivo a detecção de mutações somáticas que possam ser usadas como marcadores de resposta ao tratamento imunossupressor. Diferentemente, em pacientes com AA constitucional, a avaliação genética é fundamental para detecção de mutações etiológicas na doença do paciente, sendo essencial para o tratamento e seleção de doadores de medula óssea. Contudo, o papel das mutações constitucionais na fisiopatologia e modulação imunológica da AA adquirida ainda não é conhecido. Neste estudo, nós sequenciamos pacientes com AA de duas coortes independentes utilizando diferentes painéis de sequenciamento de genes alvos. A primeira coorte, composta por 13 pacientes com AA adquirida, foi sequenciada utilizando um painel com 165 genes relacionados à FMO, neoplasias hematológicas, reparo de DNA, manutenção dos telômeros e vias de resposta imune. A segunda coorte, composta por 59 pacientes investigados para doença constitucional, foi sequenciada com um painel de sequenciamento comercial com 49 genes relacionados à FMO hereditária. Foram identificadas alterações potencialmente patogênicas em três dos cinco pacientes com AA adquirida que não responderam à imunossupressão: dois pacientes com variantes em TERT e um com uma variante em DHX36. Não foram identificadas variantes funcionalmente relevantes nos pacientes que responderam ao tratamento imunossupressor. Em contraste, foram identificadas variantes potencialmente patogênicas em RTEL1 em 8 pacientes com AA constitucional. Variantes em RTEL1 foram associadas tanto ao encurtamento telomérico quanto à erosão excessiva do 3\' overhang, independentemente do comprimento dos telômeros. Desse modo, apenas a medida do comprimento dos telômeros não foi suficiente para identificar todos ospacientes com disfunções teloméricas. As plataformas de sequenciamento de nova geração diminuíram o custo e o tempo para a avaliação genética dos pacientes com FMO. Em nosso estudo, os pacientes com AA adquirida não apresentaram um padrão genético associado à sua resposta ao tratamento com imunossupressores, no entanto, o sequenciamento da coorte com suspeita de AA constitucional foi capaz de identificar o defeito genético associado à doença do paciente em 40% dos casos. O uso de dados clínicos, investigação familiar, análises in silico e testes funcionais foram essenciais para uma correta interpretação da patogenicidade de novas variantes identificadas por sequenciamento de nova geração. / The pathophysiology of bone marrow failure (BMF) can be immune, as in acquired aplastic anemia (AA), or constitutional, due to germline mutations in genes critical for DNA repair and telomere maintenance. The genetic screening of patients with constitutional AA is performed to detect germline mutations that are etiologic in patients\' disease. That is critical for treatment decisions and to identify a donor for a bone marrow transplant. In acquired AA, the genetic screening has been used to detect somatic mutations that can predict patients\' outcomes after treatment, as the role of germline mutations in this disease is yet not clear. To investigate the role of germline variants in AA, we screened two independent cohorts with two different targeting sequencing panels; a first cohort composed by 13 patients with acquired AA that was screened using a panel with 165 genes related to BMF, hematologic malignancies, DNA repair, telomere maintenance, and immune response pathways. A second cohort composed of 59 patients suspected to have a constitutional disease screened by a commercial Inherited Bone Marrow Failure Sequencing panel. In our first cohort, while patients without functional relevant germline variants responded to immunosuppression treatment (n=8), three out of 5 nonresponder patients were identified with variants in telomere biology genes. We found patients carrying TERT and DHX36 variants. In our constitutional AA cohort, we identified 8 patients carrying variants in the RTEL1 gene, a helicase critical to telomere maintenance. RTEL1 variants associated with both patients\' overall telomere shortening and single-stranded 3\' overhang erosion independent of telomere length. Also, 3\' overhang erosion was associated with patients\' predisposition to clonal evolution. In this context, the variants identified in the helicases genes DHX36 and RTEL1 were both associated with patients\' normal telomere length and poor outcomes. Also, telomere length measurement alone was insufficient to identify all primary telomere defects. The platforms of next-generation sequencing decreased the cost and time for the genetic screening of patients with BMF. In our study, acquired AA patients did not display a clear genetic pattern associated with their immunosuppressive treatment response. In contrast, the sequencing of the cohort selected based on their suspicion to have an inherited diseaseidentified a molecular defect that might be pathogenic in up to 40% of patients, including the RTEL1 variants. Pathogenicity assessment of genetic variants requires a combination of clinical, in silico, and functional data required to avoid misinterpretation of common variants.

Page generated in 0.1679 seconds