Spelling suggestions: "subject:"birich layered oxide cathode"" "subject:"birich layered oxide cathodic""
1 |
Understanding the Chemistries of Ni-rich Layered Oxide Materials for Applications in Lithium Batteries and CatalysisWaters, Crystal Kenee 17 November 2021 (has links)
Ni-rich layered oxide materials have gained significant attention due to the ongoing advances and demands in energy storage. The energy revolution continues to catapult the need for improved battery materials, especially for applications in portable electronic devices and electric vehicles. Lithium batteries are at the frontier of energy storage. Due to geopolitical concerns, there is a growing need to understand the chemistries of Co-free, Ni-rich layered oxide materials which are cost-efficient and possess increased practical capacity. The challenge to studying this class of materials is their inherent electronic and structural fragility. The fragility of these materials is facilitated by a cooperation of metal cation migration, lattice oxygen loss, and undesirable oxide cathode-electrolyte interfacial reactions. Each of these phenomena contribute to complex electrolyte decomposition pathways and oxide cathode structural distortions. Structural instability leads to poor battery performance metrics including specific capacity fading and decreased Coulombic efficiency.
Electrolyte decomposition occurs at the oxide cathode surface, but it can lead to bulk electronic and structural changes, chemomechanical breakdown, and irreversible phase transformations in the material. The work in this dissertation focuses on understanding some of the chemistries associated with degradation of representative Ni-rich layered oxides, specifically LiNiO2 (LNO) and LiNixMnyCozO2 (NMC) (where x+y+z =1) materials. Chapter 1 provides a comprehensive review of the interfacial chemistries of fragile, Ni-rich layered oxide materials with carbonate-based liquid electrolytes. These reactions are key in deducing mechanistic pathways that promote thermal runaway. Uncontrollable oxygen loss and electrolyte oxidation leads to catastrophic battery fires and explosions. The chapter highlights the material properties that become perturbed during high states-of-charge which complicate the materials chemistry associated with Ni-rich layered oxides. Lastly, a few strategies to mitigate undesired, structurally detrimental reactions at the Ni-rich layered oxide cathode surface are provided in Chapter 1. To obtain the technical data detailed in this dissertation, a variety of analytical methods are employed. Chapter 2 introduces the working principles of the X-ray techniques, electron microscopy, and other quantification methods. X-ray techniques including synchrotron X-ray absorption spectroscopy (XAS), and its components XANES and EXAFS are discussed. Other X-ray techniques, including X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are additionally included. Electron microscopy techniques, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM) are provided. Quantification methods, such as gas chromatography – flame ionization detection (GC-FID) and other electrochemical testing methods are also described. Detailed experimental information obtained using the analytical methods is provided in the technical chapters.
In understanding the chemistry of Ni-rich layered oxides, exploring surface reconstruction is key. Surface reconstruction, a phenomenon caused by a collaboration between Li/Ni cation intermixing and lattice oxygen loss, is one of the major explanations for structural degradation in Ni-rich layered oxide materials. Chapter 3 explores surface reconstruction and deduces a mechanism by which lattice oxygen is loss in LiNi0.6Mn0.2Co0.2O2 (NMC622). By exploiting Li+ intercalation chemistry, the work emulates various states-of-charge to explore how delithiation impacts small, organic molecule oxidation. Benzyl alcohol serves as a good probing molecule. It is similar to an oxidizable, nonaqueous electrolytic species that undergoes oxidation at the oxide cathode surface. Structure-reactivity trends are defined to correlate electronic and structural changes, lattice oxygen loss, and small molecule oxidation.
After studying a proxy molecule, a practical system is required to grasp the complexity of the cathode-electrolyte interfacial reactions that promote Ni-rich layered oxide degradation. In Chapter 4, an electrolyte stirring experiment is described. Stirring experiments provide an accelerated testing method which helps to deduce the influences of chemical electrolyte decomposition on structural degradation of LiNiO2 (LNO). X-ray techniques are used to illustrate electronic perturbations and structural distortions in the material after probing with EC/DMC w/w 3:7 LiPF6. Additionally, this dissertation chapter features a novel voltage oscillation experiment that is employed to quantify Ni-rich oxide cathode degradation at the phase transition regions. LNO has three charging plateaus – H1 ïƒ M, M ïƒ H2, and H2 ïƒ H3. The latter two plateaus have been largely associated with irreversible structural fragility in Ni-rich layered oxides. Cation intermixing and oxygen loss are two phenomena that are largely associated with decreased Li+ intercalation kinetics and increased undesired side reactions. Although researchers debate the chemical phenomenon that occur at each of the phase transitions, most agree that the H2 ïƒ H3 transition is highly influenced by irreversible lattice oxygen loss. This dissertation chapter describes the studies used to explore the electronic changes and structural distortions that accompany the voltage oscillation electrochemical testing.
While Ni-rich layered oxides are largely employed as lithium battery cathodes, this class of material is unique in that it is a reducible and electronically tunable. Electronically modifiable metal oxide materials provide a unique platform to lend information to other applications, such as catalysis. There is much debate surrounding the role of metal oxides on metal nanocatalyst performance for catalytically reductive pathways. Chapter 5 discusses the method of employing LiNiO2 and other NMC materials as electronically tunable metal oxides to determine the role of the reducible metal oxide support on the gold (Au) nanocatalyst for p-nitrophenol reduction to p-aminophenol. By obtaining a continuum of nickel (Ni) oxidation states using delithiation strategies, structural-activity relationship trends are provided. Conversion rates for each of the delithiated materials was calculated using pseudo first-order kinetics. Lastly, a detailed discussion on metal oxide reducibility and its influences on key mechanistic factors, such as the induction period is included.
Chapter 6 in this dissertation provides conclusions for the technical work provided. It bridges the works together and describes the overarching findings associated with the chemistries of Ni-rich layered oxide materials. This dissertation lays the foundation for future experimentation and innovation in understanding the surface chemistry of Ni-rich layered oxides. Chapter 7 provides future perspectives for each of the technical works included herein. Additionally, the final chapter includes insights toward the future of lithium batteries and other cathode chemistries. As the world navigates the energy revolution, it is important to provide global perspectives expected to catapult a sustainable future with batteries towards a greener world. / Doctor of Philosophy / Rechargeable lithium batteries have gained a significant surge of interest due to the ongoing demands for portable electronic devices, as well as the global trend towards electric vehicles to decrease the carbon footprint. Lithium batteries reside at the pinnacle of the energy transition. Layered oxide materials are typically employed as the cathode in Li-ion batteries. Ni-rich layered oxides have gained much interest due to their low cost and good charge/discharge capabilities. As consumers want increased charging rates and longer lifetimes, researchers struggle to optimize the balance between incorporating Ni-rich cathodes and increased safety concerns caused by cathode structural fragility. The lack of structural robustness is largely due to the surface reactivity of Ni-rich layered oxide materials. Bonding arrangements and electron transfer pathways intrinsic to this class of material increases the complexity in understanding the surface chemistry and the associated degradation pathways.
Oxygen loss is the major cause of the safety issues in lithium batteries such as battery fires and explosions. To mitigate the safety concerns, it is imperative to understand the chemistries that promote organic, liquid electrolyte decomposition, electronic and structural changes, chemomechanical breakdown, and irreversible phase transformations. Each of these components leads to decreased battery performance.
The work in this dissertation describes model and practical platforms to probe and understand the chemistries associated with battery performance degradation. A variety of analytical methods were utilized to determine overall structure-activity relationship trends and are highlighted in Chapter 2. Chapters 3-5 is technical research providing insight on Ni-rich layered oxide degradation pathways and behaviors. The work advances the understanding of battery surface chemistry which will lead to improved cathode design. As batteries continue to grow, it is important to know other applications that benefit from the unique chemistry of Ni-rich layered oxide materials. By exploiting the lithium battery cathode chemistry, this dissertation highlights a method to utilize these materials to understand the role of metal oxides on Au nanocatalysts. Conclusions to the findings in this dissertation are provided in Chapter 6. Future perspectives on the technical research provided herein this dissertation is included in Chapter 7. Additionally, Chapter 7 details future perspectives for lithium batteries and how they can facilitate the global transition toward a sustainable future.
|
Page generated in 0.1093 seconds