Spelling suggestions: "subject:"iii shape demory alloys"" "subject:"iii shape demory molloys""
1 |
Effects of Constrained Aging on the Shape Memory Response of Nickel Rich Niti Shape Memory AlloysBarrie, Fatmata Haja 2009 December 1900 (has links)
Ni50.6Ti49.4 single and Ni52Ti48 polycrystalline shape memory alloy samples were subjected to aging under a uniaxial stress, to form a single Ni4Ti3 precipitate variant and to investigate the effects of single versus multi-variant coherent precipitates on the shape memory characteristics including two-way shape memory effect (TWSME). Shape memory and superelasticity properties along with the effects of stress and temperature on the transformation temperatures, strain, hysteresis, dimensional stability, and R-phase formation were investigated. This was accomplished through the use of isobaric thermal cycling and superelasticity experiments and various microscopy techniques that included transmission electron microscopy (TEM), scanning electron microscopy, and optical microcopy.
The results showed that it is feasible to use constrained aging to bias R-phase martensite variants upon cooling from austenite without any external stress, however, accomplishing this with B19’martensite was much harder as complete TWSME was only found in the Ni50.6Ti49.4 single crystalline sample oriented along the [112] direction. The onset of irrecoverable strain corresponded to the R-phase temperature hysteresis increase in the single crystalline samples regardless of the aging conditions. Through TEM analysis it was discovered that [112] and [114] twins were found in austenite due to plastic deformation of martensite during the superelasticity experiments. Since [112] twins are theoretically impossible to form in austenite, and since martensite was plastically deformed, [112] austenite twins were attributed to the transformation of compound twins in martensite, in particular [113] martensite twins formed during the plastic deformation of martensite, into austenite twins.
In the Ni52Ti48 polycrystalline samples, a compressive R-phase variant was biased through constrained aging under 100 and 200 MPa uniaxial tensile stresses at 400°C and 450°C. Aging, in all conditions, produced a high density of Ni4Ti3 precipitates that was most likely responsible for the small transformation strain observed, less that 2%, upon transformation to martensite.
In the future, samples with compositions between 50.8 and 51.5 Ni atomic percent, in addition to altered solution and aging heat treatments as compared to those used in this study should be investigated as it is believed that samples with these compositions will yield better and consistent TWSME responses through constrained aging.
|
2 |
PRESTRESSING OF SIMPLY SUPPORTED CONCRETE BEAM WITH NITINOL SHAPE MEMORY ALLOYKotamala, Sreenath 25 August 2004 (has links)
No description available.
|
3 |
SHAPE MEMORY BEHAVIOR OF SINGLE AND POLYCRYSTALLINE NICKEL RICH NICKEL TITANIUM ALLOYSKaya, Irfan 01 January 2014 (has links)
NiTi is the most commonly used shape memory alloy (SMA) and has been widely used for bio-medical, electrical and mechanical applications. Nickel rich NiTi shape memory alloys are coming into prominence due to their distinct superelasticity and shape memory properties as compared to near equi-atomic NiTi shape memory alloys. Besides, their lower density and higher work output than steels makes these alloys an excellent candidate for aerospace and automotive industry. Shape memory properties and phase transformation behavior of high Ni-rich Ni54Ti46 (at.%) polycrystals and Ni-rich Ni51Ti49 (at.%) single-crystals are determined. Their properties are sensitive to heat treatments that affect the phase transformation behavior of these alloys.
Phase transformation properties and microstructure were investigated in aged Ni54Ti46 alloys with differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) to reveal the precipitation characteristics and R-phase formation. It was found that Ni54Ti46 has the ability to exhibit perfect superelasticity under high stress levels (~2 GPa) with 4% total strain after 550°C-3h aging. Stress independent R-phase transformation was found to be responsible for the change in shape memory behavior with stress.
The shape memory responses of [001], [011] and [111] oriented Ni51Ti49 single-crystals alloy were reported under compression to reveal the orientation dependence of their shape memory behavior. It has been found that transformation strain, temperatures and hysteresis, Classius-Clapeyron slopes, critical stress for plastic deformation are highly orientation dependent.
The effects of precipitation formation and compressive loading at selected temperatures on the two-way shape memory effect (TWSME) properties of a [111]-oriented Ni51Ti49 shape memory alloy were revealed. Additionally, aligned Ni4Ti3 precipitates were formed in a single crystal of Ni51Ti49 alloy by aging under applied compression stress along the [111] direction. Formation of a single family of Ni4Ti3 precipitates were exhibited significant TWSME without any training or deformation. When the homogenized and aged specimens were loaded in martensite, positive TWSME was observed. After loading at high temperature in austenite, the homogenized specimen did not show TWSME while the aged specimen revealed negative TWSME.
|
4 |
Some Processing and Mechanical Behavior Related Issues in Ti-Ni Based Shape Memory AlloysShastry, Vyasa Vikasa January 2013 (has links) (PDF)
Shape memory alloys (SMAs) exhibit unique combination of structural and functional properties and hence have a variety of current and potential applications. The mechanical behaviour of SMAs, in particular the influence of processing on the microstructure, which in turn influences the performance of the alloy, mechanical properties at the nano-scale, and under cyclic loading conditions, are of great current interest. In this thesis, specific issues within each of these broad areas are examined with a view to suggest further optimize/characterize SMAs. They are the following: (a) For thermo-mechanical secondary processing of SMAs, can we identify the optimum combination of temperature- strain rate window that yields a desirable microstructure? (b) How can indentation be used to obtain information about functional properties of shape memory alloys so as to complement traditional methods? (c) How can the information obtained from indentation be utilized for the identification of the alloy composition that yields a high temperature SMA through the combinatorial diffusion couple approach?
Towards achieving the first objective, we study the hot deformation behavior of a cast NiTi alloy with a view of controlling the final microstructure. The “processing maps” approach is used to identify the optimum combination of temperature and strain rate for the thermomechanical processing of a SMA system commonly used in actuators applications (NiTiCu). Uniaxial compressions experiments are conducted in the temperature range of 800- 1050 °C and at strain rate range of 10-3 and 102 s-1. 2-D power dissipation efficiency and instability maps are generated and various deformation mechanisms, which operate in different temperature–strain rate regimes, are identified with the aid of these maps. Complementary microstructural analysis of specimens (post deformation) is performed with the help of electron backscattered diffraction (EBSD) analysis to arrive at a processing route which produces stress free grains. A safe window suitable for industrial processing of this alloy which leads to grain refinement and strain-free grains (as calculated by various methods of misorientation analysis representation) is suggested. Regions of the instability (characterized by the same analysis) result in strained microstructure, which in turn can affect the performance of the SMA in a detrimental manner.
Next, to extract useful information from indentation responses, microindentation experiments at a range of temperatures (as the shape memory transformation is in progress) are conducted underneath the Vickers indenter. SME was observed to cause a change in the calculated recovery ratios at temperatures above As. Spherical indentation of austenite and martensite show different characteristics in elastic and elasto- plastic regimes but are similar in the plastic regime. NanoECR experiments are also conducted under a spheroconical indenter at room temperature, where the resistance measured is observed to increase during the unloading of room temperature austenite SMA. This is a signature of the reverse transformation back to austenite during the withdrawal of the indenter.
Lastly, recovery ratios are monitored in the case of a NiTiPd diffusion couple before and after heat treatment at different temperature intervals using non- contact optical profilometry. The recovery ratio approach is successfully used to determine the useful temperature and %Pd range for a potential NiTiPd high temperature SMA. The method makes high throughput identification of high temperature shape memory alloys possible due to promising alloy compositions being identified at an early stage.
|
5 |
Virtual Extensometer Analysis of Martensite Band Nucleation, Growth, and Strain Softening in Pseudoelastic NiTi Subjected to Different Load CasesElibol, Cagatay, Wagner, Martin F.-X. 10 September 2018 (has links)
Pseudoelastic NiTi shape memory alloys exhibit different stress–strain curves and modes of deformation in tension vs. compression. We have recently shown that under a combination of compression and shear, heterogeneous deformation can occur. In the present study, we use digital image correlation to systematically analyze how characteristic features of the nominally uniaxial engineering stress–strain curves (particularly the martensite nucleation peak and the plateau length) are affected by extensometer parameters in tension, compression, and the novel load case of shear-compression. By post-experimental analysis of full surface strain field data, the effect of the placement of various virtual extensometers at different locations (with respect to the nucleation site of martensite bands or inhomogeneously deforming regions) and with different gauge lengths is documented. By positioning an extensometer directly on the region corresponding to the nucleating martensite band, we, for the first time, directly record the strain-softening nature of the material—a specific softening behavior that is, for instance, important for the modeling community. Our results show that the stress–strain curves, which are often used as a basis for constitutive modeling, are affected considerably by the choice of extensometer, particularly under tensile loading, that leads to a distinct mode of localized deformation/transformation. Under compression-shear loading, inhomogeneous deformation (without lateral growth of martensite bands) is observed. The effects of extensometer gauge length are thus less pronounced than in tension, yet systematic—they are rationalized by considering the relative impact of differently deforming regions.
|
Page generated in 0.0499 seconds