• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ASSESSING THE IMPACT OF VEGETATION ON EROSION PROCESSES ON THE NIAGARA ESCARPMENT IN THE HAMILTON REGION, CANADA

Ellis, Allie January 2022 (has links)
The stability of the Niagara Escarpment is of critical importance to residents of Hamilton, Ontario as it bisects and divides the lower downtown core from upper residential and commercial areas. The frequency of large rockfalls and debris slides from the exposed escarpment face has resulted in reoccurring road closures that connect these two areas and has prompted the city to seek information on the processes affecting escarpment erosion and slope stability. The research reported here examines the relationship between tree and plant growth on bedrock stability by investigating relationships between species abundance and slope profile, and the potential movement of tree roots growing in rock fractures. The contributing factors of tree growth to physical weathering processes on highly fractured bedrock remain largely unknown; however, plants are suggested to play a key role in weathering processes in the critical zone. Bedrock structure and lithology influence the establishment of vegetation, and vegetation in turn exploits bedrock joints, fractures, and bedding planes, exacerbating physical and biomechanical weathering processes. In this study, vegetation characteristics observed on different parts of the escarpment face were documented and categorized into three distinct biophysical zones: upper and intermediary plateau, bedrock face, and sloping talus. Tree growth, with the potential to enhance bedrock disaggregation through the transfer of tree bole movement to roots exploiting bedrock fractures, was particularly prevalent on areas of sloping talus. To document the potential for bedrock disaggregation through tree bole movement, triaxial accelerometers were mounted on the boles of three different tree species growing along the escarpment in Hamilton. Sampled trees varied in geographic location to allow identification of the relationship between tree bole movement, wind speed, and dominant wind direction. Both deciduous and coniferous species were monitored to determine the impacts of canopy architecture on tree sway in response to wind. Monitoring took place over several days in the months of March, May, September, and November. Recorded tree bole movement (tilt) varied between deciduous and coniferous tree species; wind speed was strongly correlated to tilt of the coniferous tree, and wind direction was strongly correlated to tilt of the deciduous trees. Overall tree bole movement was strongly influenced by diurnal cycles of air movement and was greatest in the hours around mid-day. The outcomes of this research will form an integral component of an erosion-risk assessment study conducted, in part, for the City of Hamilton and will facilitate the design and development of vegetation management strategies for the Niagara Escarpment that may reduce erosion processes and potential damages to impacted citizens and businesses. / Thesis / Master of Science (MSc) / This research examines the impact of vegetation growth on erosion processes on the Niagara Escarpment in Hamilton, Ontario. The slope of the escarpment face exerts an important control on vegetation growth which in turn affects slope stability. Documentation of the dominant vegetation species at two research sites allows the identification of three distinct vegetation zones on the upper plateau, bedrock face, and sloping talus. The movement of tree trunks in response to air movement was also measured for several days in the months of March, May, October and November. Results show that the movement of two monitored deciduous trees was most strongly correlated to wind direction, while the movement of a coniferous tree was strongly correlated to changes in wind speed. All monitored trees were strongly influenced by daily cycles of air movement which were greatest around noon. This research identifies factors that influence both vegetation growth and slope stability on the Niagara Escarpment and may be used to develop effective erosion protection and mitigation strategies.
2

The Whirlpool Sandstone

Gietz, Otto 05 1900 (has links)
A review of the history of the nomenclature of the Medina Formation and of the previous studies of its members, particularly those studies dealing with the source of the Whirlpool sandstone. This is an attempt to show the direction of origin of the detrital materials of the Whirlpool sandstone by a study of the lateral variation of its grain size along the Niagara Escarpment. It is illustrated with maps and with photographs taken by the writer. / Thesis / Master of Science (MSc)
3

East Flamboro Township Below the Niagara Escarpment / A Study of Land Utilization and Settlement

Gardner, Nancy 04 1900 (has links)
No abstract Provided. / Thesis / Bachelor of Arts (BA)
4

East Flamboro Township Below the Niagara Escarpment

Gardner, Nancy 04 1900 (has links)
No abstract Provided / Thesis / Bachelor of Arts (BA)
5

The Sedimentology of the Medina Formation Outcropping Along the Niagara Escarpment (Ontario and New York State) / The Sedimentology of the Medina Formation

Martini, Ireneo 05 1900 (has links)
A field and textural investigation of the Medina Formation has been made. The thesis includes a brief analysis of the microscopic sedimentological properties of the sandy facies, a detailed study of the paleocurrent indicators, and a study of the distribution of the more typical sedimentary structures. Analytical laboratory data, primary sedimentary structures, and outcrop data have been used to reconstruct the paleoenvironmental setting of the Lower Silurian rocks exposed along the Niagara Escarpment from Hamilton (Ontario) to Fulton (New York). They indicate a complex of sub-environments within the broad model of a delta, with the direction of current movement being from the South-East in the eastern part of the area under study and from South-West and North-East in the western part. The determination of these two paleocurrent systems forms a major contribution of this work. / Thesis / Doctor of Philosophy (PhD)
6

Detecting Land Cover Change over a 20 Year Time Period in the Niagara Escarpment Plan Using Satellite Remote Sensing

Waite, Holly January 2009 (has links)
The Niagara Escarpment is one of Southern Ontario’s most important landscapes. Due to the nature of the landform and its location, the Escarpment is subject to various development pressures including urban expansion, mineral resource extraction, agricultural practices and recreation. In 1985, Canada’s first large scale environmentally based land use plan was put in place to ensure that only development that is compatible with the Escarpment occurred within the Niagara Escarpment Plan (NEP). The southern extent of the NEP is of particular interest in this study, since a portion of the Plan is located within the rapidly expanding Greater Toronto Area (GTA). The Plan area located in the Regional Municipalities of Hamilton and Halton represent both urban and rural geographical areas respectively, and are both experiencing development pressures and subsequent changes in land cover. Monitoring initiatives on the NEP have been established, but have done little to identify consistent techniques for monitoring land cover on the Niagara Escarpment. Land cover information is an important part of planning and environmental monitoring initiatives. Remote sensing has the potential to provide frequent and accurate land cover information over various spatial scales. The goal of this research was to examine land cover change in the Regional Municipalities of Hamilton and Halton portions of the NEP. This was achieved through the creation of land cover maps for each region using Landsat 5 Thematic Mapper (TM) remotely sensed data. These maps aided in determining the qualitative and quantitative changes that had occurred in the Plan area over a 20 year time period from 1986 to 2006. Change was also examined based on the NEP’s land use designations, to determine if the Plan policy has been effective in protecting the Escarpment. To obtain land cover maps, five different supervised classification methods were explored: Minimum Distance, Mahalanobis Distance, Maximum Likelihood, Object-oriented and Support Vector Machine. Seven land cover classes were mapped (forest, water, recreation, bare agricultural fields, vegetated agricultural fields, urban and mineral resource extraction areas) at a regional scale. SVM proved most successful at mapping land cover on the Escarpment, providing classification maps with an average accuracy of 86.7%. Land cover change analysis showed promising results with an increase in the forested class and only slight increases to the urban and mineral resource extraction classes. Negatively, there was a decrease in agricultural land overall. An examination of land cover change based on the NEP land use designations showed little change, other than change that is regulated under Plan policies, proving the success of the NEP for protecting vital Escarpment lands insofar as this can be revealed through remote sensing. Land cover should be monitored in the NEP consistently over time to ensure changes in the Plan area are compatible with the Niagara Escarpment. Remote sensing is a tool that can provide this information to the Niagara Escarpment Commission (NEC) in a timely, comprehensive and cost-effective way. The information gained from remotely sensed data can aid in environmental monitoring and policy planning into the future.
7

Detecting Land Cover Change over a 20 Year Time Period in the Niagara Escarpment Plan Using Satellite Remote Sensing

Waite, Holly January 2009 (has links)
The Niagara Escarpment is one of Southern Ontario’s most important landscapes. Due to the nature of the landform and its location, the Escarpment is subject to various development pressures including urban expansion, mineral resource extraction, agricultural practices and recreation. In 1985, Canada’s first large scale environmentally based land use plan was put in place to ensure that only development that is compatible with the Escarpment occurred within the Niagara Escarpment Plan (NEP). The southern extent of the NEP is of particular interest in this study, since a portion of the Plan is located within the rapidly expanding Greater Toronto Area (GTA). The Plan area located in the Regional Municipalities of Hamilton and Halton represent both urban and rural geographical areas respectively, and are both experiencing development pressures and subsequent changes in land cover. Monitoring initiatives on the NEP have been established, but have done little to identify consistent techniques for monitoring land cover on the Niagara Escarpment. Land cover information is an important part of planning and environmental monitoring initiatives. Remote sensing has the potential to provide frequent and accurate land cover information over various spatial scales. The goal of this research was to examine land cover change in the Regional Municipalities of Hamilton and Halton portions of the NEP. This was achieved through the creation of land cover maps for each region using Landsat 5 Thematic Mapper (TM) remotely sensed data. These maps aided in determining the qualitative and quantitative changes that had occurred in the Plan area over a 20 year time period from 1986 to 2006. Change was also examined based on the NEP’s land use designations, to determine if the Plan policy has been effective in protecting the Escarpment. To obtain land cover maps, five different supervised classification methods were explored: Minimum Distance, Mahalanobis Distance, Maximum Likelihood, Object-oriented and Support Vector Machine. Seven land cover classes were mapped (forest, water, recreation, bare agricultural fields, vegetated agricultural fields, urban and mineral resource extraction areas) at a regional scale. SVM proved most successful at mapping land cover on the Escarpment, providing classification maps with an average accuracy of 86.7%. Land cover change analysis showed promising results with an increase in the forested class and only slight increases to the urban and mineral resource extraction classes. Negatively, there was a decrease in agricultural land overall. An examination of land cover change based on the NEP land use designations showed little change, other than change that is regulated under Plan policies, proving the success of the NEP for protecting vital Escarpment lands insofar as this can be revealed through remote sensing. Land cover should be monitored in the NEP consistently over time to ensure changes in the Plan area are compatible with the Niagara Escarpment. Remote sensing is a tool that can provide this information to the Niagara Escarpment Commission (NEC) in a timely, comprehensive and cost-effective way. The information gained from remotely sensed data can aid in environmental monitoring and policy planning into the future.
8

Understanding decision-making at the rural-urban fringe: the cases of the Cape Winelands Biosphere Reserve, South Africa and the Niagara Escarpment Biosphere Reserve, Canada

Cash, Corrine Marie 25 April 2014 (has links)
As urban areas continue to expand into rural areas the world is experiencing a loss of productive agricultural land and diminishing natural habitats and associated ecosystems. The space where urban meets rural is known as the rural-urban fringe and what happens in these areas ultimately determines urban development patterns. Despite being such an important area, the rural-urban fringe is poorly understood and is often described as a “blurry” space – blurry in land patterns because it is where multiple uses collide and in how individuals interact in this space (since actors with often diverse opinions on how land should be used coexist there). Furthermore, there is no single body of scholarly literature that explains why and how decisions get made in rural-urban fringe areas. This thesis contributes to filling this gap in literature by helping to (i) understand and explain decision-making processes at the rural-urban fringe; (ii) create an analytical framework for understanding decision-making dynamics at the rural-urban fringe within two UNESCO Biosphere Reserves: the Cape Winelands Biosphere Reserve, South Africa and the Niagara Escarpment Biosphere Reserve, Canada; and (iii) construct a theory of decision-making for better outcomes at the rural-urban fringe. The analytical framework is divided into two parts with components drawn from problem-solving (including governance and management) and critical (critical political economy and resilience) theories. The premise is that each part contributes to a holistic understanding that they cannot accomplish on their own. The analytical framework is used as the analytical platform for consideration of the research data and is the basis on which the thesis’ theoretical contribution is built. Specifically, each case study is first examined within the context of existing governance and management processes. This reveals the character of key issues and dynamics and the resulting policy responses. The cases are then located within the broader analytical contexts of critical political economy and resilience. This reveals the historical and structural dynamics often overlooked or neglected in problem-solving approaches. The thesis reveals that in both case studies, government policy notwithstanding, decision-making within the rural-urban fringe is primarily determined by neoliberal ideologies of economic development and ‘return on investment’. What emerges from the application of the analytical framework to the two case studies is a theory of decision-making for better outcomes at the rural-urban fringe wherein "better" means a process for achieving outcomes in line with the stated goals of policies and plans, generally framed by the idea of sustainable development. The theory asserts that effective decision-making for environmentally sustainable and socially equitable outcomes at the rural-urban fringe requires six conditions to be in place: (1) sufficient economic resources; (2) adequate knowledge; (3) forgiving time scale; (4) capable state; (5) robust legal structure; (6) favorable global context. All six are important though at this stage it cannot be said with absolute certainty whether better-for-all decisions may emerge in the absence of one or more of these conditions. This theory makes a meaningful contribution to the scholarship on the rural-urban fringe and advances knowledge by articulating a new integrated approach to better decision-making that addresses the explanatory weaknesses identified by this thesis for each of the five bodies of literature considered.
9

The social construction of landscape continuity on the Niagara Escarpment and Oak Ridges Moraine : whose continuity? whose landscapes? /

Foster, Jennifer. January 2005 (has links)
Thesis (Ph.D.)--York University, 2005. Graduate Programme in Environmental Studies. / Typescript. Includes bibliographical references (leaves 242-265). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:NR19834
10

DELINEATION AND ANALYSIS OF ACTIVE GEOMORPHOLOGICAL PROCESSES USING HIGH RESOLUTION SPATIAL SURVEYS

Lee, Rebecca January 2022 (has links)
The past few decades have seen rapid improvement in technologies related to remote sensing, specifically in digital photogrammetry and the use of unmanned aerial vehicles (UAVs). This has presented new opportunities to collect imagery at both a high temporal and spatial resolution to create detailed digital elevation models (DEMs) and investigate small-scale geomorphological features and their development over time. The high-resolution capacity of this methodology is well-suited to the study of a variety of terrains in which many critical geomorphological features are low relief and difficult or impossible to delineate using traditional remote sensing datasets. This study utilizes UAV-based imagery collection and data analysis, in conjunction with sedimentological analysis, of two study sites in Iceland and southern Ontario. The primary objective of this work is to explore the utility of integrating high-resolution spatial surveys with more traditional field techniques to identify geomorphological features, interpret their depositional origin, and quantify temporal changes in their form. The first study was completed on the forefields of Öldufellsjökull and western Sléttjökull, two surge-type outlet glaciers of the Mýrdalsjökull Ice Cap in southeast Iceland. Glacial deposits are important sources of paleoclimatic information but not all deposits are formed by processes that reflect the overall climatic conditions of a region; surge-type (fast-flowing) glaciers undergo periodic episodes of rapid ice movement, often unrelated to ambient climatic conditions. Remotely sensed data and field investigations were combined to complete a landsystem analysis of the forefields at each of Öldufellsjökull and western Sléttjökull, and an unmanned aerial vehicle (UAV) was used to collect high-resolution imagery of areas of particular interest. The forefields of Öldufellsjökull and western Sléttjökull, lack many of the characteristics typical of surge-type landsystems and instead are more similar to the active temperate landsystem common in Iceland. The identification of landforms considered to be diagnostic of surge-type glacier behaviour was only possible through a targeted high-resolution UAV survey suggesting that small-scale diagnostic landforms may be overlooked in many investigations. The second study area focused on the Niagara Escarpment in Hamilton, Ontario, a major landform resulting from extensive glacial and fluvial erosion of Paleozoic sedimentary rocks during the late Quaternary. In Hamilton, the Niagara Escarpment is a steep faced cuesta composed of Ordovician and Silurian sedimentary rocks. Recent rockfalls onto roads crossing the escarpment have raised serious concerns about its stability. To address these concerns, and to provide more information on erosional processes active along the escarpment in Hamilton, a comprehensive study of the Niagara Escarpment was completed including the collection of multi-temporal photogrammetric surveys of select rock faces, and detailed sedimentological and fracture analysis. A comprehensive lithological investigation was completed of all accessible rock outcrops in Hamilton to identify areas most likely to experience erosion based on site characteristics. A second component of this investigation was to evaluate the utility of using high-resolution imagery combined with Structure from Motion (SfM) software to detect temporal changes on the escarpment face. A staged erosion study was conducted in which lithological blocks of a known size were removed from the escarpment face at a selected site, to determine the lower limits of detection of erosion using this methodology. The study found that the location of block removal (erosion) was consistently identified, but the calculated volume of blocks removed was less accurately determined, differing by an average of 175% from the known volume of the block. A further study using this same methodology tested its ability to identify areas of natural loss (erosion) from the escarpment face. Based on multiple surveys taken 14 months apart at a selected study site, approximately one third of the area of interest experienced either loss (erosion) or gain (deposition) of material. There appear to be clear connections between lithology, density of fracturing, and the location of material loss (erosion); areas of the outcrop characterised by interbedded shales, and those areas exposing densely fractured sandstone or dolostone, were most likely to erode. The lithological characteristics of the Niagara Escarpment, including the strength of individual stratigraphic units, their vertical arrangement, and their density of fracturing, as well as climatic and hydrological factors (e.g., groundwater flow, location of surficial water features, mean annual temperature, mean annual precipitation etc.), all contribute to the amount and types of erosion active on the exposed rock face. The studies reported in this thesis have integrated high-resolution, close-range imagery with traditional field techniques to explore the characteristics and development of geomorphological forms in different terrain types. In each of the studies, the importance of collecting high-resolution imagery (<10 cm) to map geomorphological features of various scales is highlighted. / Dissertation / Doctor of Science (PhD)

Page generated in 0.0827 seconds