• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Changing Climate and Geographical Patterns of Taxonomic Richness

Vázquez Rivera, Héctor January 2014 (has links)
The geographic variation of taxonomic richness may be directly determined by climate through contemporaneous/ecological processes, versus other (e.g., historical/evolutionary processes) that happen to be collinear with contemporaneous climate. In Chapter 1 I evaluated hypotheses from both groups of explanations in North America. If contemporaneous climate controls patterns of richness, then richness should vary with climate through time in the same way that richness varies with current climate through space. Over the last ca. 11,000 yr, richness-temperature relationships remained reasonably constant. Between 12,000 and 14,000 yr BP, when climate fluctuated rapidly, richness gradients as a function of temperature were significantly shallower. If historical climate over the last 21,000 years determines patterns of richness, then historical climate should be a better predictor of richness than contemporaneous climate. I rejected historical-climate as a better predictor of richness. Contemporaneous climate stands as the most plausible explanation for contemporaneous patterns of richness, at least over the last 11,000 yr. In Chapter two, I tested the prediction that richness of most taxa should increase with temperature in all but the warmest and driest areas. Climate warming during Pleistocene-Holocene transition led richness increases in wet areas, but richness declines in dry regions, as expected from current richness-climate relationships. A decline in small mammal species richness in Northern California since the late Pleistocene was expected from the current richness-climate relationship for this group in North America. These results contest the view that future global warming may lead to species extinction rates that would qualify as the sixth mass extinction in the history of the earth. In chapter three, I first tested the hypothesis that richness gradients mainly reflect the sum of individual species climatic tolerances. I tested this hypothesis for birds, mammals and trees native to eastern North America (ENA, where there are no major barriers to dispersal). The number of species present in any given area in ENA is usually much smaller than the number of species in the continental pool that tolerate the climatic conditions in that area. Second, I tested several explanations for patterns of unfilled potential richness. Unfilled potential richness is inconsistent with postglacial dispersal lags, climatic variability since the Last Glacial Maximum, or with biotic interactions. In contrast, unfilled richness is highly consistent with a probabilistic model of species climate occupancy. Individual species climatic tolerances is not the process generating the main current patterns of richness, nor are post-glacial dispersal lags, climatic variability since the LGM or biotic interactions. This thesis is consistent with the hypothesis that contemporaneous climate directly controls spatial patterns of richness. Generally, there seems to be little need to invoke historical processes as determinants of current gradients of richness.
2

Structure et dynamique d'occupation de l'espace fonctionnel à travers des gradients spatiaux et temporels

Li, Yuanzhi January 2017 (has links)
Les modèles d'occupation de niche au sein des communautés locales, la variabilité spatiale de la biodiversité le long des gradients environnementaux du stress et des perturbations, et les processus de succession végétale sont plusieurs sujets fondamentaux en écologie. Récemment, l'approche basée sur les traits est apparue comme un moyen prometteur de comprendre les processus structurant les communautés végétales et cette approche a même été proposée comme méthode pour reconstruire l'écologie communautaire en fonction des traits fonctionnels. Par conséquent, lier ces thèmes fondamentaux en utilisant une lentille fonctionnelle devrait nous donner un aperçu de certaines questions fondamentales en écologie et sera l'objectif principal de ma thèse. En général, mon projet de doctorat vise à étudier les structures de l'occupation de l'espace fonctionnel dans les gradients spatio-temporels. Plus précisément, l'objectif du chapitre 2 est (i) d'étudier les modèles d'occupation de la niche fonctionnelle en calculant trois métriques clés de niche (le volume total de niche fonctionnelle , le chevauchement des niches fonctionnelles et le volume de niche fonctionnel moyen) des communautés pauvres en espèces aux communautés riches en espèces et (ii) de déterminer le principal facteur de la structure observée de l'occupation de la niche fonctionnelle dans les communautés végétales du monde entier. Dans le chapitre 3, je vise à prédire et à expliquer la variation de la richesse en espèces selon les gradients de stress et de perturbation, en reliant le modèle d'équilibre dynamique et l'occupation de la niche fonctionnelle en fonction du cadre développé au chapitre 2. L'objectif du chapitre 4 est de tester expérimentalement l’application d'une méthode d'ordination CSR évaluée globalement en fonction de trois traits de feuilles (surface foliaire, teneur en matière sèche des feuilles et surface foliaire spécifique) dans les études locales. Enfin, l'objectif du chapitre 5 est de tester expérimentalement les hypothèses qui concilient les points de vue déterministes et historiquement contingents de la succession végétale, en étudiant la variation des divergences taxonomiques et fonctionnelles entre les communautés selon des gradients de stress et de perturbation. L'étude globale (chapitre 2) est basée sur une collection de 21 jeux de données, couvrant les biomes tropicaux et tempérés, et se compose de 313 communautés végétales représentant différentes formes de croissance. Les études locales (chapitre 3, 4 et 5) sont basées sur le même système expérimental constitué de 24 mésocosmes présentant différents niveaux de stress et de perturbation. L'expérience a commencé en 2009 avec le même mélange de graines de 30 espèces herbacées semées sur les 24 mésocosmes et s'est terminée en 2016. Nous avons permis la colonisation naturelle de graines de la banque commune de graines de sol et de l'environnement pendant la succession de sept ans. Dix traits ont été mesurés sur cinq individus (échantillonnés directement à partir des mésocosmes) par espèce par mésocosme en 2014 (chapitre 3 et 4). Un autre ensemble de traits (16 traits, y compris certains traits qui ne pouvaient pas être mesurés directement dans les mésocosmes), ont été mesurés au niveau de l'espèce (valeurs moyennes des traits) pour les 34 espèces les plus abondantes (certaines espèces disparues dans les mésocosmes) au cours des sept Ans, en les regroupant séparément pour une saison de croissance. Au chapitre 2, nous avons constaté que les communautés étaient plus diverses en termes fonctionnels (une augmentation du volume fonctionnel total) dans les communautés riches en espèces et que les espèces se chevauchaient davantage au sein de la communauté (augmentation du chevauchement fonctionnel), mais ne divisaient pas plus finement l'espace fonctionnel (aucune réduction du volume fonctionnel moyen). En outre, le filtrage de l'habitat est un processus répandu qui conduit à la caractérisation de l'occupation de niche fonctionnelle dans les communautés végétales. Dans le chapitre 3, nous avons trouvé un modèle similaire d'occupation de niche fonctionnelle sur un système expérimental avec une taille spatiale communautaire constante et un effort d'échantillonnage des traits, qui, avec le chapitre 2, nous a fourni une image plus complète et plus solide de l'occupation de niche fonctionnelle dans les communautés végétales. De plus, nous avons réussi à relier le modèle de l'occupation de la niche fonctionnelle et le modèle d'équilibre dynamique et avons constaté que le filtrage concurrentiel était le processus dominant qui détermine le mode d'occupation de la niche fonctionnelle et la richesse des espèces le long du stress et de la perturbation des gradients. Au chapitre 4, nous fournissons un soutien empirique à une méthode d'ordination CSR calibrée globalement en montrant une relation entre l'abondance relative d'espèces en croissance dans les mésocosmes ayant différents niveaux de fertilité du sol et mortalité indépendante de la densité et leur classification CSR. Au chapitre 5, nous avons montré que la succession d'installations au cours de sept ans dans ces mésocosmes était plus déterministe d'un point de vue fonctionnel, mais plus historiquement contingent d'un point de vue taxonomique et que l'importance relative de la contingence historique a diminué à mesure que l'environnement devenait plus stressé ou perturbé. En conclusion, les structures de l'occupation de l'espace fonctionnel dans (le volume fonctionnel total, le chevauchement fonctionnel et le volume fonctionnel moyen, les Chapitre 2 et 3) ou entre les communautés locales (dissimilarité fonctionnelle, chapitre 5) sont déterministes plutôt que neutres (ou contingence historique ). Les espèces tolératrices de stress sont plus avantagées dans les mésocosmes moins fertiles tandis que les espèces rudérales sont plus avantagées dans les mésocosmes avec plus de mortalité indépendante de la densité. / Abstract : The patterns of niche occupancy within local communities, the spatial variability of biodiversity along environmental gradients of stress and disturbance, and the processes of plant succession are several fundamental topics in ecology. Recently, the trait-based approach has emerged as a promising way to understand the processes structuring plant communities and has even been proposed as a method to rebuild community ecology based on functional traits. Therefore, linking these fundamental themes through a functional lens should give us more insight into some basic questions in ecology and will be the main objective of my thesis. Generally, my PhD project is to investigate the structures of functional space occupancy along both spatial and temporal gradients. Specifically, the objective of Chapter 2 is to investigate the patterns of functional niche occupancy by calculating three key niche metrics (the total functional niche volume, the functional niche overlap and the average functional niche volume) from speciespoor communities to species-rich communities and to determine the main driver of the observed pattern of functional niche occupancy across plant communities worldwide. In Chapter 3, I aim to predict and explain the variation of species richness along gradients of stress and disturbance, by linking the dynamic equilibrium model and functional niche occupancy based on the framework developed in Chapter 2. The objective of Chapter 4 is to experimentally test the application of a globally calibrated CSR ordination method based on three leaf traits (leaf area, leaf dry matter content and specific leaf area) in local studies. Finally, the aim of Chapter 5 is to experimentally test the hypotheses reconciling the deterministic and historically contingent views of plant succession, by investigating the variation of taxonomic and functional dissimilarities between communities along gradients of stress and disturbance. The global study (Chapter 2) is based on a collection 21 trait datasets, spanning tropical to temperate biomes, and consisting of 313 plant communities representing different growth forms. The local studies (Chapter 3, 4 and 5) are based on the same experimental system consisting of 24 mesocosms experiencing different levels of stress and disturbance. The experiment started in 2009 with the same seed mixture of 30 herbaceous species broadcast over the 24 mesocosms and ended in 2016. We allowed natural colonization of seeds from the common soil seed bank and from the surroundings during the seven-year succession. Ten traits were measured on five individuals (sampled directly from the mesocosms) per species per mesocosms in 2014 (Chapter 3 and 4). Another set of traits (16 traits including some traits that were not able to measured directly in the mesocosms) were measured at the species level (species mean traits values) for the 34 most abundant species (some species disappeared in the mesocosms) over the seven years, by regrowing them separately for one growing season. In Chapter 2, we found communities were more functionally diverse (an increase in total functional volume) in species-rich communities, and species overlapped more within the community (an increase in functional overlap) but did not more finely divide the functional space (no decline in average functional volume). Moreover, habitat filtering is a widespread process driving the pattern of functional niche occupancy across plant communities. In Chapter 3, we found a similar pattern of functional niche occupancy on an experimental system with a constant community spatial size and trait-sampling effort, which together with Chapter 2 provided us a more comprehensive and robust picture of functional niche occupancy across plant communities. In addition, we succeeded in linking the pattern of functional niche occupancy and the dynamic equilibrium model and found that habitat filtering was the dominant process determining the pattern of functional niche occupancy and species richness along the gradients stress and disturbance. In Chapter 4, we provide empirical support for a globally calibrated CSR ordination method by showing a relationship between the relative abundance of species growing in mesocosms having different levels of soil fertility and density-independent mortality and their CSR classification. In Chapter 5, we showed that plant succession over seven years in these mesocosms was more deterministic from a functional perspective but more historically contingent from a taxonomic perspective, and that the relative importance of historical contingency decreased as the environment became more stressed or disturbed. In conclusion, the structures of functional space occupancy within (the total functional volume, the functional overlap and the average functional volume; Chapter 2 and 3) or between local communities (functional dissimilarity, Chapter 5) are deterministic rather than neutral (or historical contingency). Stress-tolerators were more favored in high stress communities, while ruderals are more favored in high disturbed mesocosms (Chapter 4).

Page generated in 0.0582 seconds