Spelling suggestions: "subject:"bickel alloys - microstructure"" "subject:"bickel alloys - icrostructure""
1 |
Effect of Microstructure on High-Temperature Mechanical Behavior of Nickel-Base Superalloys for Turbine Disc ApplicationsSharpe, Heather Joan 03 July 2007 (has links)
Engineers constantly seek advancements in the performance of aircraft and power generation engines, including, lower costs and emissions, and improved fuel efficiency. Nickel-base superalloys are the material of choice for turbine discs, which experience some of the highest temperatures and stresses in the engine. Engine performance is proportional to operating temperatures. Consequently, the high-temperature capabilities of disc materials limit the performance of gas-turbine engines. Therefore, any improvements to engine performance necessitate improved alloy performance.
In order to take advantage of improvements in high-temperature capabilities through tailoring of alloy microstructure, the overall objectives of this work were to establish relationships between alloy processing and microstructure, and between microstructure and mechanical properties. In addition, the project aimed to demonstrate the applicability of neural network modeling to the field of Ni-base disc alloy development and behavior.
A full program of heat-treatment, microstructural quantification, mechanical testing, and neural network modeling was successfully applied to next generation Ni-base disc alloys. Mechanical testing included hot tensile, hot hardness, creep deformation, creep crack growth, and fatigue crack growth. From this work the mechanisms of processing-structure and structure-property relationships were studied. Further, testing results were used to demonstrate the applicability of machine-learning techniques to the development and optimization of this family of superalloys.
|
2 |
Microstructural Evolution and Mechanical Response of Materials by Design and ModelingDutt, Aniket Kumar 05 1900 (has links)
Mechanical properties of structural materials are highly correlated to their microstructure. The relationship between microstructure and mechanical properties can be established experimentally. The growing need for structural materials in industry promotes the study of microstructural evolution of materials by design using computational approaches. This thesis presents the microstructural evolution of two different structural materials. The first uses a genetic algorithm approach to study the microstructural evolution of a high-temperature nickel-based oxide-dispersion-strengthened (ODS) alloy. The chosen Ni-20Cr ODS system has nano Y2O3 particles for dispersion strengthening and submicron Al2O3 for composite strengthening. Synergistic effects through the interaction of small dispersoids and large reinforcements improved high-temperature strength. Optimization considered different weight factors on low temperature strength, ductility, and high temperature strength. Simulation revealed optimal size and volume fraction of dispersoids and reinforced particles. Ni-20Cr-based alloys were developed via mechanical alloying for computational optimization and validation. The Ni-20Cr-1.2Y2O3-5Al2O3 alloy exhibited significant reduction in the minimum creep rate (on the order of 10-9 s-1) at 800oC and 100 MPa. The second considers the microstructural evolution of AA 7050 alloy during friction stir welding (FSW). Modeling the FSW process includes thermal, material flow, microstructural and strength modeling. Three-dimensional material flow and heat transfer model was developed for friction stir welding process of AA 7050 alloy to predict thermal histories and extent of deformation. Peak temperature decreases with the decrease in traverse speed at constant advance per revolution, while the increase in tool rotation rate enhances peak temperature. Shear strain is higher than the longitudinal and transverse strain for lower traverse speed and tool rotation rate; whereas for higher traverse speed and tool rotation rate, shear and normal strain acquire similar values. Precipitation distribution simulation using TC-PRISMA predicts the presence of η' and η in the as-received AA 7050-T7451 alloy and mostly η in the friction stir welded AA7050 alloy, which results in the lower predicted strength of friction stir welded alloy. Further, development of modeling assists in process optimization and innovation, and enhances the progression rate. Accelerating the development process requires coupling experimental methods with predictive modeling. The overall purpose of this work was to develop an integrated computational model with predictive capabilities. In the present work, an application tool to predict thermal histories during FSW of AA7050 was developed using COMSOL software.
|
3 |
Evolution Of Texture And Microstructure In Some NiTi Based Alloys And Their Impact On Shape Memory BehaviorSuresh, K S 07 1900 (has links) (PDF)
NiTi based shape memory alloys (SMA) cover most of the commercially produced shape memory devices and components. The reversible martensitic transformation between the phases B2 (austenite) and B19′ (martensite) is responsible for the shape memory effect in these alloys. The amount of strain which can be regained after a permanent deformation through thermal activation, known as the recoverable strain, is a strong function of crystallographic texture and microstructure. Texture influences the activation of a specific martensite variant during stress induced martensitic (SIM) transformation and also the re-orientation of twinned variants during further deformation. The variant selection decides the amount of recoverable strain. Since the NiTi based shape memory alloys inevitably undergo thermo-mechanical processing in the course of component design, the consequent evolution of texture and microstructure regulate the shape memory behavior. The present thesis is aimed to address this issue in some NiTi alloys that are technologically important for different applications, namely a binary Ni-rich NiTi alloy, a copper containing NiTi alloy and a hafnium containing NiTi alloy. The Ni rich NiTi alloy displays pseudoelastic behavior that can be used for couplings, the NiTiCu alloy provides a controlled thermal hysteresis suitable for actuator applications and the NiTiHf alloy can be used for high temperature applications.
The first Chapter of the thesis provides a detailed overview of the existing knowledge related to evolution of microstructure and texture during processing, the transformation texture and its role on the shape memory behavior in NiTi alloys. The second chapter includes the experimental procedure followed to generate different textures, namely unidirectional and cross rolling with and without a subsequent annealing and also the details of the techniques used to characterize the structure, microstructure, texture and mechanical properties.
The evolution of texture during thermo-mechanical processing of a Ni rich NiTi alloy and its impact on shape memory behavior is addressed in Chapter 3. The two modes of rolling employed at higher temperature led to the formation of different textures. The texture of unidirectionally rolled samples was characterized by a strong <111>||ND fiber, while a strong Goss {100}<110> component along with <111>||ND fiber was observed in the texture of the cross rolled samples. Annealing of the unidirectionally rolled samples generated a strong <100>||ND fiber, and a weak <111>||ND fiber was observed for the cross rolled samples. Microtexture analyses indicated that dynamically recrystallized grains had significantly different texture compared to the statically annealed material. One of the salient features of this study is the analysis of different twin boundaries with coincident site lattice (CSL) relations that has been observed in the hot rolled material. The origin of these twins has been attributed to deformation. The evolution of twin boundaries with CSL relation has strong influence on texture formation. A few of the important texture components have been found to have CSL relation amongst them. The origin of different texture components were found using intra-grain misorientation parameters.
In-situ transformation studies in a scanning electron microscope have confirmed the formation of different types of twins at very low amount of strain in the Ni rich NiTi alloy. A Schmid factor based criterion was used to identify the activation of a particular variant. Trace analysis of the surface relief due to SIM transformation was utilized to confirm the theoretically predicted variant. Schmid criterion has been found to be valid in all the cases. Modulus variation with temperature and strain was studied using dynamical mechanical analysis. Microstructural changes during thermal and thermo-mechanical cycling revealed higher orientation gradient along grain boundaries compared to grain interior. The compatibility condition at the grain boundaries were attributed to higher misorientation development. Misorientation development during cycling loading process is also found to be a strong function of texture. Processing condition and texture has a strong influence on the recoverable strain. Particularly, the strength of <111>||ND fiber is influential in deciding the recoverable strain.
Study of microstructure and texture evolution in the TiNiCu SMA and subsequent study on its impact on recoverable strain is presented in Chapter 4. Convincing evidences for the mechanisms operating during different dynamic restoration processes have been presented through microstructural investigation. Texture analysis of the austenite phase showed the formation of <111>||ND fiber. Despite the weakening of texture at larger strain, strength of certain deformation texture components like S {123}<634> and Cu {112}<111> increased, which suggested that texture evolution in TiNiCu alloy deviates from the texture of binary NiTi at large strains. Transformation texture analysis was carried out through electron back scattered diffraction technique, using an in-situ heating stage. The analysis of the results showed predominant activation of <011> type II as well as {11 1 } type I twins. A comparison of martensite and austenite pole figures indicated strong variant selection during phase transformation. Like the binary NiTi alloy, cross rolling of TiNiCu alloy also showed ample changes in the texture of martensite phase through the formation of different texture components. Annealing of both unidirectionally and cross rolled samples led to the weakening of texture. The change in volume fraction of Ti2NiCu precipitates, resulting from different processing conditions, influenced the transformation temperature. In this case also, texture and large intra-grain misorientation governed the recoverable strain.
Chapter 5 is dedicated to the study of high temperature NiTiHf alloy. X-ray diffraction and differential scanning calorimetric studies confirmed a two step martensitic transformation, a B19` monoclinic and rhombohedral R-phase martensite in the studied alloy (Ni49.4Ti38.6Hf12). Microstructural investigations showed the formation of dendritic (Ti,Hf)2Ni precipitates along the grain boundary. Evolution of R-phase martensite was always observed along with (Ti,Hf)2Ni precipitates, irrespective of the processing condition. Dissolution of (Ti,Hf)2Ni precipitates by solution treatment suppressed the R phase formation. Strong texture of R-phase martensite confirmed variant selection during martensitic transformation. On the contrary, texture of B19` martensite was always weak, suggesting no preference for variant selection. Rolled material with a relatively strong texture exhibited higher recoverable strain compared to annealed material.
Finally, all the significant outcomes of the present investigation are summarized in Chapter 6. Based on the conclusions, suggestions for future work have been mentioned.
|
Page generated in 0.0507 seconds