• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Investigation of the Use of Hybrid Suspension-solution Feedstock to Fabricate Direct-oxidation Nickel-Based Anodes (BaO-Ni-YSZ, CeO2-Ni-YSZ, Sn-Ni-YSZ) by Plasma Spraying

Kirton, Kerry 20 November 2012 (has links)
The reduction of manufacturing costs and the facilitation of direct-oxidation of hydrocarbon fuels have been identified as means of promoting the commercialization of the solid oxide fuel cell, a technology that offers both environmental and fuel conservation benefits compared to conventional energy conversion technologies. This research was conducted with the aim of realizing the production of direct-oxidation anodes using atmospheric plasma spraying, which has been identified as a fabrication technique that has the potential to reduce the manufacturing costs of solid oxide fuel cells. This thesis details the rationale behind the selection of the anode compositions (BaO-Ni-YSZ, CeO2-Ni-YSZ, and Sn-Ni-YSZ) and the specifics of the specialized fabrication strategy (SPS-SPPS) that was devised with the aim of realizing microstructures similar to those where the secondary phases (BaO, CeO2, and Sn) coat the surfaces of the primary Ni and YSZ phases. Results of XRD, SEM and EDS analyses are presented.
2

An Investigation of the Use of Hybrid Suspension-solution Feedstock to Fabricate Direct-oxidation Nickel-Based Anodes (BaO-Ni-YSZ, CeO2-Ni-YSZ, Sn-Ni-YSZ) by Plasma Spraying

Kirton, Kerry 20 November 2012 (has links)
The reduction of manufacturing costs and the facilitation of direct-oxidation of hydrocarbon fuels have been identified as means of promoting the commercialization of the solid oxide fuel cell, a technology that offers both environmental and fuel conservation benefits compared to conventional energy conversion technologies. This research was conducted with the aim of realizing the production of direct-oxidation anodes using atmospheric plasma spraying, which has been identified as a fabrication technique that has the potential to reduce the manufacturing costs of solid oxide fuel cells. This thesis details the rationale behind the selection of the anode compositions (BaO-Ni-YSZ, CeO2-Ni-YSZ, and Sn-Ni-YSZ) and the specifics of the specialized fabrication strategy (SPS-SPPS) that was devised with the aim of realizing microstructures similar to those where the secondary phases (BaO, CeO2, and Sn) coat the surfaces of the primary Ni and YSZ phases. Results of XRD, SEM and EDS analyses are presented.

Page generated in 0.0482 seconds