Spelling suggestions: "subject:"nickeltitanium alloys"" "subject:"nickeltitanium molloys""
21 |
Surface modification of NiTi for long term orthopedic applicationsChan, Yee-loi., 陳以來. January 2007 (has links)
published_or_final_version / abstract / Orthopaedics and Traumatology / Master / Master of Philosophy
|
22 |
Comparison of three nickel-titanium instruments and the step-down technique for preparing curved root canalsWei, Xi. January 2000 (has links)
Thesis (M.D.S.)--University of Hong Kong, 2000. / Includes bibliographical references (leaves 119-130) Also available in print.
|
23 |
Experimental investigation on phase transformation of superelastic NiTi microtubes /Li, Zhiqi. January 2002 (has links)
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2002. / Includes bibliographical references (leaves 155-160). Also available in electronic version. Access restricted to campus users.
|
24 |
Stress-induced phase transformation and reorientation in NiTi tubes /Ng, Kwok Leung. January 2003 (has links)
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2003. / Includes bibliographical references (leaves 94-98). Also available in electronic version. Access restricted to campus users.
|
25 |
Environmentally enhanced crack growth in nickel-based superalloys /Huang, Zhifan, January 2002 (has links)
Thesis (Ph. D.)--Lehigh University, 2003. / Includes vita. Includes bibliographical references (leaves 198-205).
|
26 |
Functional coatings on Ti-6A1-4V and NiTi shape memory alloy for medical applicationsLee, Wing-cheung., 李永祥. January 2011 (has links)
Due to its excellent biocompatibility and mechanical properties, Ti-6Al-4V alloy has been extensively used in the medical field, especially as a material for hard tissue replacement. Owing to the unique shape memory and superelastic properties, NiTi shape memory alloy (SMA, with 50.8 at.% of Ni) has been investigated for load-bearing applications in orthopedics and dentistry. Since the longevity of current metal implants is approximately 10 to 15 years, many patients need to have revision surgeries in their lifetime. Therefore, there is great interest in the long-term stability, biocompatibility, bioactivity and other properties of Ti-6Al-4V and NiTi SMA implants. Implant-associated infections also pose serious threat to the success of metal implants. The goal of this project was to investigate several low-temperature surface modification techniques, including anodization and electrochemical deposition, and formulate coatings for potential clinical applications. Accordingly, several types of coatings were synthesized on Ti-6Al-4V and NiTi SMA substrates. Various aspects of the coatings, such as morphology, chemical composition, crystallinity, phase and bioactivity, were analyzed.
Firstly, a systematic study on the formation of titania nanotubes on Ti-6Al-4V by anodization was performed. Anodizing voltage and time were varied for comparisons. A dense and compact titania nanotube layer was synthesized on Ti-6Al-4V by anodizing at 25 V for 20 min. The titania nanotubes formed were rutile. After annealing at 500oC for 1 h, the titania nanotubes became anatase. The anatase phase exhibited better wettability than the rutile phase.
Secondly, dense and compact apatite coatings were formed on NiTi SMA samples through electrochemical deposition using mainly double-strength simulated body fluid (2SBF) as the electrolyte. The deposition conditions were varied and apatite coating characteristics studied. With the inclusion of collagen molecules (0.1 mg/ml) in the electrolyte (2SBFC), apatite/collagen composite coatings were fabricated. Collagen fibrils were not only observed on the surface of composite coatings but also were embedded inside in the coatings and at the coating-substrate interface. Results obtained from transmission electron microscopic and X-ray diffraction analyses showed that the apatite crystals in apatite coatings and apatite/collagen composite coatings were calcium-deficient carbonated hydroxyapatite. Apatite/collagen composite coatings exhibited excellent hydrophilicity, whereas apatite coatings displayed hydrophobic surfaces.
Finally, gentamicin-loaded, tobramycin-loaded, and vancomycin-loaded apatite coatings and apatite/collagen composite coatings were synthesized on NiTi SMA samples through electrochemical deposition using different drug concentrations in the electrolytes. A comparative study of apatite coatings and apatite/collagen composite coatings as drug delivery vehicles were conducted. Different aspects of antibiotic-loaded coatings (surface characteristics, chemical composition, wettability, etc.) and in vitro release behaviour were investigated. The antibiotics were physically embedded in coatings during coating formation. Upon sample soaking in phosphate-buffered saline (PBS), the release profiles established for antibiotic-loaded coatings demonstrated different levels of initial burst release and subsequent steady release characteristics. Apatite coatings and apatite/collagen coatings displayed preferential incorporation of specific antibiotics. For instance, apatite/collagen coatings showed better vancomycin incorporation than apatite coatings and the incorporation of vancomycin was better than tobramycin for apatite/collagen coatings. Apatite coatings demonstrated better tobramycin incorporation than apatite/collagen composite coatings. / published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
|
27 |
Behavior of a Ni-Ti shape memory alloy under cyclic proportional and nonproportional loadingLim, Tzi-shing Jesse 05 1900 (has links)
No description available.
|
28 |
Interface morphology and its stability in martensitic phase transformation of NiTi shape memory alloy /Dong, Liang. January 2008 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2008. / Includes bibliographical references (p. 125-131).
|
29 |
An investigation of the interfacial characteristics of nitinol fibers in a thermoset composite /Jones, Wendy Michele, January 1991 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1991. / Vita. Abstract. Includes bibliographical references (leaves 123-127). Also available via the Internet.
|
30 |
Prestressing concrete with shape memory alloy fibers a thesis /Orvis, Skye Mikaella. Jansen, Daniel Charles, January 1900 (has links)
Thesis (M.S.)--California Polytechnic State University, 2009. / Mode of access: Internet. Title from PDF title page; viewed on July 10, 2009. Major professor: Daniel C. Jansen. "Presented to the faculty of California Polytechnic State University, San Luis Obispo." "In partial fulfillment of the requirements for the degree of Master of Science in Civil and Environmental Engineering." "June·2009." Includes bibliographical references (p. 79-80).
|
Page generated in 0.0543 seconds