• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neurobiological basis of the nicotine withdrawal reaction : an experimental analysis /

Hildebrand, Bengt E., January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst. / Härtill 6 uppsatser.
2

A study of twelve mothers' concepts about cigarette smoking and its effects on themselves and on their baby

Beisiegel, Doris Winifred January 1964 (has links)
Thesis (M.S.)--Boston University / PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / 2999-01-01
3

The Effects of Nicotine on the Proteolytic Activity of Periodontal Pathogens

Kaeley, Janice,1976- January 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Periodontal disease is the leading cause of tooth loss in adults. Bacterial biofilm on tooth surfaces is the primary initiator of periodontal disease. Various factors contribute to the severity of periodontal disease including the different virulence factors of the bacteria within the biofilm. In the progression of periodontal disease, the microflora evolves from a predominantly Gram positive microbial population to a mainly Gram negative population. Specific gram negative bacteria with pronounced virulence factors have been implicated in the etiology and pathogenesis of periodontal disease, namely Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola which form the red complex of bacteria. The orange complex bacteria become more dominant in the maturation process of dental plaque and act to bridge the early colonizers of plaque with the later more dominant red complex bacterial and consists of such bacteria as Campylobacter showae, Campylobacter rectus, Fusobacterium nucleatum and Prevotella intermedia. Perhaps the most investigated contributing factor is the relationship between smoking and periodontal disease. When examining the association between cigarette smoking and interproximal bone loss, greater bone loss is associated with higher cigarette consumption, longer duration (i.e., pack year history) and higher lifetime exposure. The presence of various virulence factors such as the production of a capsular material, as well as the proteolytic activity of the various periopathodontic bacteria has been associated with the pathogenesis of periodontitis. Even though many different enzymes are produced in large quantities by these periodontal bacteria, trypsin-like enzymes, chymotrypsin-like enzymes and elastase-like enzymes, as well as dipeptidyl peptidase-like enzymes, have been thought to increase the destructive potential of the bacterium and mediate destruction of the periodontal apparatus. More specifically, it is hypothesized that the proteolytic activity of other clinically important periodontal pathogens, such as Fusobacterium nucleatum, Prevotella intermedia and Porphyromonas assacharolyticus, is increased in the presence of nicotine. The purpose of this study was to determine the effects of nicotine on F. nucleatum, P. intermedia and P. assacharolyticus proteolytic activity. Cultures were maintained on anaerobic blood agar plates containing 3% sheep blood. Bacterial cells were harvested from the plates and washed. Washed F. nucleatum, P. intermedia and P. assacharolyticus cells were incubated with 1 mg/ml of nicotine. Bacterial cells not incubated with nicotine were used as positive controls. Secreted enzymatic activity was measured using the synthetic chromogenic substrates glycyl-L-proline-p-nitroanilide (GPPNA), N-succinyl-L-alanyl-L-alanyl-L-alanyl-p-nitroanilide (SAAAPNA), N-succinyl-alanine-alanine-proline-phenylalanine-p-nitroanilide (SAAPPPNA) and N-α-benzoyl-L-arginine-p-nitroanilide (L-BAPNA) (Sigma-Aldrich Products, St. Louis, MO, USA). Appropriate means and standard deviations were determined for each of the enzymatic activities measured and analysis of variance (ANOVA) was used to compare the groups utilizing a 5% significance level for all comparisons. Results demonstrated that after 60 minutes of incubation of F. nucleatum, P. intermedia and P. assacharolyticus cells with 1 mg/ml of nicotine and the various synthetic substrates, had the following proteolytic activity for GPPNA: 0.83 ± 0.14, 0.72 ± 0.03 and 0.67 ± 0.10, respectively; SAAAPNA: 0.82 ± 0.06, 0.76 ± 0.05 and 0.68 ± 0.08, respectively; SAAPPPNA: 0.90 ± 0.13, 0.85 ± 0.17 and 0.72 ± 0.03, respectively; and BAPNA: 0.81 ± 0.15, 0.74 ± 0.13 and 0.74 ± 0.16, respectively. In conclusion, the results indicate that in the presence of 1 mg/ml of nicotine, the proteolytic activity of F. nucleatum and P. assacharolyticus was increased with all of the synthetic substrates (with statistical significance seen only in the increases with F. nucleatum and GPPNA, SAAAPNA and BAPNA). The proteolytic activity exhibited an increasing trend in activity for P. intermedia with SAAPPPNA and BAPNA but a decreasing trend in activity with GPPNA and SAAAPNA when incubated with 1 mg/ml of nicotine, once again demonstrating no statistical significance for any of the substrates. Therefore, it could be concluded that based on these results nicotine at a concentration of 1 mg/ml may increase the proteolytic activity of periodontal pathogens and thus may increase periodontal disease activity and subsequent periodontal breakdown. Further studies are needed to validate these results utilizing different concentrations of nicotine.
4

Effect of nicotine on streptococcus mutans

Huang, Ruijie 11 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Streptococcus mutans is a key contributor to dental caries. Smokers have increased caries, but the association between tobacco, nicotine, caries and S. mutans growth is little investigated. In the first section, seven S. mutans strains were used for screening. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum biofilm inhibitory concentration (MBIC) were 16 mg/ml (0.1 M), 32 mg/ml (0.2 M), and 16 mg/ml (0.1 M), respectively, for most of the S. mutans strains. Growth of planktonic S. mutans cells was significantly repressed by 2.0-8.0 mg/ml nicotine concentrations. Biofilm formation and metabolic activity of S. mutans was increased in a nicotine-dependent manner up to 16.0 mg/ml. Scanning electron microscopy (SEM) revealed higher nicotine-treated S. mutans had thicker biofilm and more spherical bacterial cells than lower concentrations of nicotine. In the second section, confocal laser scanning microscopy (CLSM) results demonstrated that both biofilm bacterial cell numbers and extracellular polysaccharide (EPS) synthesis were increased by nicotine. Glucosyltransferase (Gtf) and glucan binding protein A (GbpA) protein expression of S. mutans planktonic cells were upregulated, while GbpB protein expression of biofilm cells were downregulated by nicotine. The mRNA expression of those genes were mostly consistent with their protein results. Nicotine was not directly involved in S. mutans LDH activity. However, since it increased the total number of bacterial cells in biofilm; total LDH activity of S. mutans biofilm was increased. In the third section, a PCR-based multiple species cell counting (PCR-MSCC) method was designed to investigate the effect of nicotine on S. mutans in a ten mixed species culture. The absolute S. mutans number in mixed biofilm culture was increased but the percentage of S. mutans in the total number of bacterial cells was not changed. In conclusion, nicotine enhanced biofilm formation and biofilm metabolism of S. mutans, through stimulating S. mutans planktonic cell Gtfs and Gbps expression. This leads to more planktonic cells attaching to dental biofilm. Increased S. mutans cell numbers, in biofilms of single species or ten mixed species, resulted in higher overall LDH activity. More lactic acid may be generated and contribute to caries development in smokers.
5

Effects of tobacco on human gingival fibroblasts

Zhang, Weiping January 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The negative heath consequences of smoking are widely recognized, but there are still about 20% of the people in United States using tobacco products. Cigarette smoke condensate (CSC), the particulate matter of cigarette smoke, is comprised of thousands of chemicals (e.g., nicotine). Secondary only to bacterial plaque, cigarette smoking is a major risk factor for periodontal disease. Human gingival fibroblasts (HGFs) are the main cellular component of periodontal connective tissues. During the development of periodontal disease, collagen degradation occurs. Collagen is the major extracellular matrix component of the gingiva. The major extracellular matrix degrading enzymes produced by the HGFs are the matrix metalloproteinases (MMPs). The MMPs are mainly modulated by the tissue inhibitors of metalloproteinases (TIMPs). In this dissertation, three studies aimed at understanding the effects of tobacco on human gingival fibroblasts and their mechanisms have been conducted: the effects of CSC on HGF-mediated collagen degradation; comparison of the effects of CSC on HGFs with that of nicotine; and the combined effects of CSC and bacteria on HGFs. The cell proliferation of HGFs decreased and cytotoxicity increased in HGFs treated with increasing concentrations of CSC. CSC increased the collagen degrading ability of the HGFs by altering the production and localization of MMPs and TIMPs. Nicotine is one of the major components and the most pharmacologically active agent in tobacco. The percentage of nicotine in the CSC was 2.4%. CSC (100 µg/ml) increased the collagen degrading ability of the HGFs by affecting membrane associated MMP-2, MMP-14, and TIMP-2, but the level of nicotine in the CSC may only play a limited role in this process. Porphyromonas gingivalis (P. gingivalis) is an opportunistic pathogen involved in periodontal disease. The combined effects of CSC and P. gingivalis supernatant increased HGF-mediated collagen degradation by destroying the balance between the MMPs and TIMPs at the protein and mRNA levels. This project demonstrated that tobacco (with or without P. gingivalis) increased HGF mediated collagen degradation, as seen in the periodontal disease, through altering the MMPs and TIMPs.

Page generated in 0.0646 seconds