Spelling suggestions: "subject:"did d’abeilles"" "subject:"dfid d’abeilles""
1 |
Étude expérimentale et simulation numérique de l’usinage des matériaux en nids d’abeilles : application au fraisage des structures Nomex® et Aluminium / Experimental study and numerical simulation of the machining of honeycomb structures : Milling application for Nomex® and Aluminium structuresJaafar, Mohamed 20 December 2018 (has links)
L'utilisation des structures sandwichs composées d’âme en nid d'abeilles et de peaux a considérablement augmenté ces dernières années dans plusieurs secteurs industriels tels que l’aéronautique, l’aérospatiale, le navale et l’automobile. Cet intérêt croissant pour ces matériaux alvéolaires est principalement lié à leur faible densité et meilleur rapport masse/rigidité/résistance en comparaison avec les alliages métalliques ou les matériaux composites classiques. Cependant, leur constitution rend souvent les opérations de mise en forme par usinage compliquées et difficile à mener à cause de l’usure prématurée des outils coupants et l’endommagement important induit en subsurface des pièces. En effet, les vibrations importantes des parois minces du nid d’abeilles sont une source de plusieurs problèmes comme la mauvaise qualité des surfaces usinées, les fibres non coupées, délaminage, défauts, etc. Les travaux de cette thèse s’intéressent à la compréhension du comportement des structures nids d’abeilles composite (Nomex®) et métallique (aluminium) en usinage. L’enlèvement de matière par fraisage présente pour ces matériaux plusieurs verrous scientifiques et technologiques. Une analyse expérimentale a permis d’identifier dans un premier temps les phénomènes physiques mis en jeu lors de la formation des copeaux et les interactions entre les arêtes de coupe et les parois minces des cellules de la structure alvéolaire. Un intérêt particulier a été porté sur la caractérisation des défauts induits dans le matériau par les différentes parties composant la fraise, le déchiqueteur et le coteau. Deux protocoles expérimentaux ont été mis en place afin de qualifier la qualité et l’intégrité des surfaces usinées. Ils tiennent compte de la particularité des âmes en nid d'abeilles : composite ou métallique, leur géométrie alvéolaire, leur densité et l’épaisseur fine des parois. Un nouveau critère de qualité a été établi et proposé en tant qu’indicateur d’endommagement pour le suivi de l’état des surfaces alvéolaires fraichement usinées. Basée sur l’analyse statistique de Taguchi, une hiérarchisation des paramètres d’usinage et leur influence sur le comportement de ces matériaux ont été ensuite réalisées. Par ailleurs, l’usure des outils de coupe a été étudiée selon le couple outil-matériau usiné et les conditions de fraisage choisies. Comme l’a montré l’étude expérimentale, l’optimisation des paramètres d’usinage via une approche expérimentale seule est souvent longue et coûteuse. La simulation numérique peut apporter une aide complémentaire et constituer un outil intéressant pour l’analyse de la physique de la coupe des nids d’abeilles. Dans cette optique et en deuxième partie de la thèse, un modèle numérique par éléments finis a été spécifiquement développé pour la simulation du fraisage 3D des matériaux nids d’abeilles. Pour le Nomex®, deux lois de comportement mécanique couplées avec l’endommagement ont été identifiées et implémentées via la subroutine VUMAT dans Abaqus explicit. Pour simuler la formation des copeaux, deux critères de rupture (Hashin et Tsai-Wu) avec chute de rigidité ont été exploités. Les résultats du calcul numérique et ceux des essais expérimentaux ont montré une bonne concordance en termes de mécanismes de formation des copeaux, d’efforts de coupe et de modes d’endommagement / The use of sandwich structures made with honeycomb core and skins has considerably increased these last years in several industrial sectors such as aeronautics, aerospace, naval and automotive. This growing interest for the alveolar materials is mainly related to their low density and better mass/stiffness/strength ratio compared to metal alloys or conventional composites. However, their constitution makes machining operations complicated and difficult to control because of the premature cutting tool wear and the significant damage induced in the workpiece. In fact, the important vibrations of the thin honeycomb walls are a source of several problems such as the poor surface quality, uncut fibers, delamination, defects, etc. This work deals with the understanding of the honeycomb composites behavior and metallic during machining. The material removal process by milling of these materials presents several scientific and technological challenges. Firstly, an experimental analysis has been used to identify the physical phenomena involved during the chip formation process and generated by the interactions between the cutting edge and the honeycomb cell walls. A particular interest was focused on the characterization of defects induced in the material by different parts of the cutter, the shredder and the saw blade. Two experimental protocols have been set up to qualify the quality and integrity of the machined surface. They consider the particularity of the honeycomb cores: composite or metallic, their geometry, and the thin wall thickness. A new quality criterion has been established and proposed as a damage indicator to monitoring the machining process and choice optimal cutting conditions. Based on Taguchi's statistical analysis, a hierarchy of the machining parameters and their influence on the behavior of these materials have then realized. In addition, the wear of cutting tools has been studied according to the selected tool-material couple and milling conditions. The optimization of machining parameters is often long and expensive only via experimental approach. Modelling and numerical simulation can provide complementary support with an interesting numerical tool to analyze the physics of cutting honeycombs. In this perspective and in the second part of the PhD thesis, a finite element numerical model has been especially developed for the 3D milling operation. For Nomex®, two coupled mechanical-damage behavior laws have been identified and implemented in Abaqus explicit subroutine VUMAT. To simulate the chip formation process and induced subsurface damage, two fracture criteria (Hashin and Tsai-Wu) with stiffness degradation concept have been operated. The comparison between the numerical simulation results and experimental data shows a good agreement in terms of the chip formation mechanisms, cutting forces and damage modes
|
2 |
Modélisation des chocs d’origine pyrotechnique dans les structures d’Ariane5 : développement de modèles de propagation et d'outils de modélisation / Numerical modeling of pyrotechnic shock wave propagation in the Ariane5's structures : development of propagation models and numerical toolsGrédé, Audrey 28 January 2009 (has links)
La compréhension et l’amélioration de l’environnement vibratoire des charges utiles demande la mise au point de démarches prédictives maîtrisées qui permettent de comprendre les phénomènes de transmission des ondes de chocs d’origine pyrotechnique dans le lanceur Ariane5. Plus particulièrement, la maîtrise du comportement transitoire des coques sandwichs en nid d’abeilles, principaux constituants de l’Adaptateur de Charges Utiles – structure porteuse des satellites, est nécessaire pour prédire les vibrations au pied des équipements électroniques des satellites et des lanceurs. Cette problématique présente un caractère multi-échelle tant d’un point de vue temporel (charge mobile supersonique, temps d’analyse) que spatial (dimensions des structures du lanceur, taille des cellules en nid d’abeilles, longueurs d’ondes liées aux hautes fréquences). Celui-ci a été traité dans cette thèse en s’appuyant d’une part, sur une qualification à la fois analytique et numérique des modèles classiques homogénéisés des plaques sandwichs en nid d’abeilles pour la gamme de fréquence mise en jeu et d’autre part, sur une application des stratégies de remaillage adaptatif pour la propagation des ondes développées dans le cadre de la méthode de Galerkin espace-temps discontinue en temps. Deux catégories de modèles de plaques épaisses ont été ainsi construites dans le but d’enrichir la cinématique classique de plaques épaisses de Mindlin-Reissner qui s’est avérée être insuffisante pour correctement représenter le comportement dynamique hors-plan des plaques sandwich en nid d’abeilles. Ainsi ont été analysés les modèles dits monocouches basés sur un enrichissement de la cinématique par ajout de degrés de liberté dans l’épaisseur, et les modèles multicouches composés d’une superposition de trois plaques avec une homogénéisation séparée des matériaux. Il a été montré que ces deux sortes de modèles améliorent la description des phénomènes de hautes fréquences, notamment ceux de flexion et de cisaillement transverse qui sont plus délicats à retranscrire. Toutes les études numériques ont été effectuées avec un code éléments finis qui emploie des solveurs adaptatifs dynamiques basés sur la méthode de Galerkin espace-temps discontinue en temps. Cette méthode d’intégration en temps introduit un amortissement numérique dépendant du pas de temps et qui peut interférer avec un amortissement physique susceptible d’être introduit dans un modèle numérique et conduire au final à un amortissement total différent de celui qui est attendu. Cette interaction a été analysée et mise en évidence dans ce travail à travers l’introduction de l’amortissement de Rayleigh dans les modèles de propagation de chocs. Les outils et les modèles de propagation ainsi développés ont été validés sur plusieurs structures académiques et industrielles. Des comparaisons avec des données expérimentales sur des structures industrielles de grande taille, plus particulièrement sur un Adaptateur de Charges Utiles d’Ariane5, sont effectuées et soulignent la cohérence de notre approche ainsi que la fiabilité et l’efficacité des modèles de propagation proposés. / Reliable and efficient numerical models for the pyrotechnic shock wave propagation in structures of the Ariane5 launcher are necessary for a good understanding and a predictive analysis of the payload vibration environment. More precisely, the correct modeling of the dynamic behaviour of the honeycomb sandwich shells, the main material composing the payload adaptor, is essential to control the vibration environment of the payload and the embarked electronic equipments and so to prevent them from damages caused by the shock wave propagation. The topic is obviously a multi-scale problem from both temporal and spatial points of view : short time intervals imposed by supersonic moving loads vs. large total time interval that the slowest waves need to travel throughout the adaptor ; very short wavelengths of high frequency waves, and very small size of the honeycomb cells vs. large structure dimensions. To take into account all involved space-time scales in a reliable and efficient way, the herein study is based both on the analytical and numerical qualification of the classical homogenized models of honeycomb sandwich shells for the frequency range introduced by the pyrotechnic shock wave, and on a dynamic solver based on the well-known space-time discontinuous Galerkin method, allowing the use of adaptive remeshes for the wave propagation. The classical Mindlin-Reissner’s kinematics of thick plates being inefficient to correctly represent the dynamic out-of-plane behaviour of the honeycomb sandwich plates, two kinds of its enrichment are considered : One-layered models based on an enrichment of the kinematics by adding degrees of freedom in the thickness, and multi-layered models composed of a superposition of three plates with separated material homogenisations. It has been shown theoretically and numerically that, both types of enrichment allow more precise descriptions of flexure and transverse shear modes in the high frequency range. However, the multi-layered models give much more promising results, as the important role played by the honeycomb core for the transverse shear behaviour of the whole sandwich is not “smeared” in a one-layered homogenized model. All the numerical studies were conducted with a finite element code which uses a dynamic solverbased on the time discontinuous space-time Galerkin method. The built-in numerical damping of this solver can interfere with a physical damping potentially introduced by the numerical model and results in a global damping totally unexpected. This interaction has been analysed and underlined in this work thanks to the introduction of the Rayleigh damping in the shock wave propagation models. Theoretical and numerical tools and propagating models thus developed have been validated on several academic and industrial structures. Comparison with experimental data on large size industrial structures, especially a real size payload adaptor, is performed and emphasizes the coherence of our approach and the reliability and the efficiency of the proposed propagating models.
|
3 |
Matériaux composites commandables pour applications hyperfréquences dans les structures navales / Reconfigurable composite materials for high frequency ship applicationsRubrice, Kevin 13 October 2016 (has links)
Les matériaux composites prennent une place de plus en plus importante dans la conception et la fabrication des moyens de transport et notamment dans le domaine naval où ils sont particulièrement privilégiés. En effet, ces matériaux sont utilisés pour leur légèreté, insensibilité à la corrosion et leurs caractéristiques mécaniques. Dans le domaine militaire, où l'optimisation des moyens de communication et de protection électromagnétique est primordiale, le développement de matériaux composites dotés de propriétés de reconfigurabilité sous commande(s) externe(s), présente un atout opérationnel majeur pour les parois structurales exploitant ces matériaux. Afin d'explorer cette voie, DCNS et l'Institut d’Électronique et de Télécommunications de Rennes (IETR, UMR-6164) se sont associés. Les travaux de thèse engagés ont pour objectif d'étudier et de développer des matériaux composites présentant des fonctions de reconfigurabilité applicables aux systèmes navals tels que les radômes, les antennes et exploitables pour répondre aux problématiques de furtivité (SER). Une première étude a permis d'explorer les matériaux à base de carbone, présentant une potentielle agilité de leurs caractéristiques diélectriques sous actuateur électrique. Ces matériaux présentent également un fort pouvoir absorbant électromagnétique, tributaire des propriétés diélectriques, elles-mêmes potentiellement reconfigurables. La seconde étude engagée a étudié l'impact des matériaux ferroélectriques, c'est-à-dire des matériaux reconfigurables sous champ électrique, lorsqu'ils sont intégrés comme charge dans une résine d'imprégnation. Ce nouveau matériau composite présente alors une reconfigurabilité de ses caractéristiques diélectriques, rendant commandable en fréquence sa structure hôte. Une troisième étude, exploitant aussi le matériau ferroélectrique a permis l'obtention d'une reconfigurabilité des caractéristiques de réflectivité de panneaux composites grâce au développement de surfaces sélectives en fréquence reconfigurables. De nouvelles propriétés ont ainsi été mises en évidence en hyperfréquences. Enfin, les matériaux d'âmes et spécifiquement les nids d'abeilles diélectriques ont fait l'étude d'une fonctionnalisation pour des applications DC et hyperfréquences. / Composite materials are used for their lightness, high resistance to corrosion and high mechanical properties over large application areas, such as naval, ground and aerial. Collaboration between DCNS group and the Institute of Electronics and Telecommunications of Rennes (IETR, UMR-6164) has been initiated to develop smart composite materials with tunable properties at microwaves. Three different routes have been investigated during the thesis work. The first one is based on carbon composite material, its electromagnetic absorbing ability and its potential dielectric tunability. For this, we develop composite materials loaded with various carbon particles (carbon nanotube, graphene, black carbon). Next, to elaborate smart composite materials, a ferroelectric material has been used as filler. The dielectric characteristics of such materials can be tuned under external biasing for example. Thus we develop an active composite material under various external actuators for naval application, and especially for new reconfigurable frequency selective surface (RFSS). Finally dielectric honeycomb materials have been specifically elaborated and studied to develop smart properties for DC and microwave applications. During this work, three different prototypes improving composite materials in naval area have been performed: reconfigurable radome, RCS reduction, and antenna isolation.
|
Page generated in 0.0741 seconds