• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 60
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 293
  • 293
  • 293
  • 55
  • 55
  • 53
  • 51
  • 33
  • 32
  • 32
  • 31
  • 29
  • 28
  • 26
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

NOS2 Induction and HO-­1-­Mediated Transcriptional Control in Gram-­Negative Peritonitis

Withers, Crystal Michele January 2013 (has links)
<p>Nitric oxide (NO) is an endogenous gaseous signaling molecule produced by three NO synthase isoforms (NOS1, 2, 3) and important in host defense. The induction of NOS2 during bacterial sepsis is critical for pathogen clearance but its sustained activation has long been associated with increased mortality secondary to multiple organ dysfunction syndrome (MODS). High levels of NO produced by NOS2 incite intrinsic cellular dysfunction, in part by damaging macromolecules through nitration and/or nitrosylation. These include mitochondrial DNA (mtDNA) and enzymes of key mitochondrial pathways required for maintenance of normal O2 utilization and energy homeostasis. However, animal studies and clinical trials inhibiting NOS2 have demonstrated pronounced organ dysfunction and increased mortality in response to live bacterial infections, confirming that NOS2 confers pro-survival benefits. Of particular interest here, the constitutive NOS1 and NOS3 have been linked to the up-regulation of nuclear genes involved in mitochondrial biogenesis but no comparable role has been described for NOS2. <italic> Therefore, I hypothesized that NOS2 is indispensible for host protection but must be tightly regulated to ensure NO levels are high enough to activate mitochondrial and other pro-survival genes, but below the threshold for cellular damage.</italic></p><p>This hypothesis was explored with two major Aims. The <italic>first Aim</italic> was to define the role of NOS2 in the activation of mitochondrial biogenesis in the heart of <italic>E. coli</italic>-treated mice. The <italic>second</italic> was to investigate the ability of NOS2 to be transcriptionally regulated by an enzyme previously shown to induce mitochondrial biogenesis, heme oxygenase-1 (HO-1). This hypothesis was tested using an <italic>in vivo</italic> model of sublethal heat-killed <italic>E. coli</italic> (<italic>HkEC</italic>) peritonitis in C57B/L6 (Wt), NOS2-/-, and TLR4-/- mice. Additionally, <italic>in vitro</italic> systems of mouse AML-12 or Hepa 1-6 cells pretreated with HO-1 activators or <italic>Hmox1</italic> shRNA prior to inflammatory challenge with lipopolysaccharide (LPS) +/- tumor necrosis factor-&alpha; (TNF-&alpha;). For the first Aim, Wt, NOS2-/-, and TLR4-/- mice were treated with (<italic>HkEC</italic> and cardiac tissue analyzed for mitochondrial function, expression of nuclear and mitochondrial proteins needed for mitochondrial biogenesis, and histological expression of NOS2 and TLR4 relative to changes in mitochondrial mass. For the second Aim, Wt mice were pretreated with hemin or carbon monoxide (CO) to activate HO-1 prior to <italic>HkEC</italic>-peritonitis. Liver tissue in these animals was evaluated at four hours for HO-1 induction, <italic>Nos2</italic> mRNA expression, cytokine profiles, and nuclear factor (NF)-&kappa;B activation. Liver cell lines were pretreated with hemin, CO-releasing molecule (CORM), or bilirubin one hour before LPS exposure and the <italic>Nos2</italic> transcriptional response evaluated at two and 24 hours. The MTT assay was used to confirm that <italic>in vitro</italic> treatments were not lethal. </p><p>These studies demonstrated that <italic>HkEC</italic> induced mtDNA damage in the heart that was repaired in Wt mice but not in NOS2-deficient mice. In KO mice, sustained mtDNA damage was associated with the reduced expression of nuclear (NRF-1, PGC-1&alpha;) and mitochondrial (Tfam, Pol-&gamma;) proteins needed for mitochondrial biogenesis. The findings thus supported that NOS2 is required for mitochondrial biogenesis in the heart during Gram-negative challenge. Evaluation of the relationship between HO-1 and NOS2 in murine liver was more complex; HO-1 activation in <italic>HkEC</italic>-treated Wt mice attenuated 4-hour <italic>Nos2</italic> gene transcription. In liver cell lines, hemin, CORM, and bilirubin were unable to suppress <italic>Nos2</italic> expression at the time of maximal induction (2 hours). <italic>Nos2</italic> was, however, suppressed by 24 hours, suggesting that the regulatory impact of HO-1 induction was not engaged early enough to reduce <italic>Nos2</italic> transcription at 2 hours. It is concluded that NOS2 induction in bacterial sepsis optimizes the expression of the mitochondrial biogenesis transcriptional program, which subsequently can also be regulated by HO-1/CO in murine liver. This provides a potential new mechanism by which immune suppression and mitochondrial repair can occur in tandem during the acute inflammatory response.</p> / Dissertation
162

Chlorine-induced lung injury and the role of iNOS

Campbell, Holly R., 1976- January 2009 (has links)
Reactive airways dysfunction syndrome (RADS), a form of irritant-induced asthma (IIA) has been observed in humans following acute chlorine (Cl 2) gas exposure in occupational and domestic settings. Following Cl 2 injury, subepithelial fibrosis, mucous hyperplasia, and non-specific airway hyperresponsiveness have been reported. Based on the disease profile, we hypothesized that pulmonary damage may be oxidative in nature. / The aim of this work was to develop a murine model of irritant-induced asthma in order to investigate the pathogenic processes and potential oxidative mechanisms involved in response to Cl2 exposure, with a secondary aim of examining the role of iNOS in response to Cl2 inhalation. / A/J, C57BI/6J (wild type) and iNOS-1- mice exposed to various concentrations of Cl2 were mechanically ventilated for measurement of lung mechanics and responses to i.v. methacholine (MCh). Bronchoalveolar lavage was performed to examine total protein, cell populations and nitrate/nitrates. Tissues were harvested for histology and immunocytochemistry for iNOS, 3NT and carbonyl residues. To examine the role of iNOS, a subset of animals were treated with a selective iNOS inhibitor (1400W) and non-selective NOS inhibitor LNAME. / Chlorine exposure caused airway hyperresponsiveness, which appeared to be mitigated by iNOS blockade with 1400W, however this was not the case in iNOS-1- mice. Cl2 exposure also caused increases in total BAL protein, total cells, NOx, neutrophils, iNOS, 3NT and carbonyl residues. / In conclusion, chlorine exposure causes lung injury, similar to reactive airways dysfunction syndrome, characterized by airway hyperresponsiveness, epithelial sloughing, inflammatory cell influx, oxidative injury and increases in both the activity and expression of iNOS. Chlorine-induced airway hyperresponsiveness is mitigated, in part, by selective blockade of iNOS with the use of pharmacological intervention.
163

Regional neurochemical characterization of the flinders sensitive line rat with regard to glutamate-nitric oxide and cGMP signalling pathways / Estella Lily Minnaar.

Minnaar, Estella Lily January 2008 (has links)
The serious nature of MDD has intensified the need to identify and elucidate new neurobiological targets for antidepressant drug action. Depression presents with evidence for degenerative pathology that relates to disturbances in excitatory glutamatergic pathways, particularly the N-methyl-D-aspartate (NMDA) receptormediated release of the pleiotropic molecule, nitric oxide (NO), and cyclic guanosine monophosphate (cGMP). The contribution of the glutamate-NO/cGMP pathway may realize great importance as a fundamental substrate underlying the pathophysiology of major depression. In the next generation of antidepressant drugs, the nitric oxide pathway could playa dynamic role in addressing urgent therapeutic needs. In this study, we have used a genetic model of depression, the Flinders Sensitive Line (FSL) rat, to investigate the surrogate markers of the NO/cGMP pathway. The aim was to determine whether the depressive-like behaviour of the hypercholinergic FSL rat is accompanied by altered activation of the NO/cGMP pathway. To this end, the extent to which the FSL and Flinders Resistant Line (FRL) rats differ neurochemically with regard to basal hippocampal and frontal cortical NOS-activity, as well as nitric oxide (NO) and cGMP accumulation, were determined. Additionally, select behavioural assessments were performed to confirm the anxiogenic phenotype of the FSL strain. For neurochemical determinations a sensitive fluorometric reversed phase highperformance liquid chromatographic (HPLC) assay was developed to analyze total nitrite and nitrate in brain tissue. Nitrate was enzymatically converted to nitrite before derivatization with 2,3-diaminonaphthalene (DAN). The stable and highly fluorescent product, 2,3-naphthotriazole (NAT), was quantified. Secondly, the quantity of the amino acid L-citrulline was measured by HPLC with electrochemical detection after o-phthalaldehyde (OPA) derivatization. L-citrulline formation was used as an index for nNOS activity. Finally, a direct, competitive enzyme immunoassay kit was used to determine the downstream activity of the NO-pathway in brain tissue. FSL rats were compared to FRL rats with respect to sensitivity to serotonin 5-HT1A . receptor-mediated hypothermia under our lab-conditions. The Open Field Test (OFT) behavioural assessment was performed to compare FSL with FRL groups under baseline conditions according to their level of inherent anxiety. The parameters used to measure anxiety were number of line crosses (locomotor activity), time spent in middle blocks and social interaction time between pairs of rats. As an additional behavioural assessment, the Forced Swim Test (FST) was performed to assess behavioural restraint measured as time of immobility. Basal cGMP levels in the frontal cortex were found to be significantly less in FSL than in FRL rats, whereas the levels in the hippocampus did not differ significantly. No other significant differences with respect to NO and nNOS activity were apparent in either of the brain areas. The hypothermia test confirmed a significantly greater decrease in temperature in the FSL rat than the FRL rat. The FST did not confirm any differences in immobility time between the two rat strains. In the OFT, FSL rat groups exhibited behaviour that indicated significantly more anxiety than FRL rats. Under basal conditions, FSL rats do not present with significant changes in markers of the NO cascade in the hippocampus and frontal cortex compared to FRL controls, including NOS activity as well as NO accumUlation. However, cGMP levels were found to be significantly lower in the frontal cortex of FSL rats versus FRL rats, although not in the hippocampus. Since the FSL rat is known to be hypercholinergic, these data support an interaction between the NO/cGMP pathway and the cholinergIc system in the frontal cortex but not hippocampus of FSL animals. The mechanisms and implications of such a mutual involvement need further clarification. Further, this anatomical differentiation may have important implications for understanding the role of NO in the depressive-like behaviour of the FSL rat and, indeed, may reveal more on the neurobiology and treatment of depression. Through the performed behavioural assessments, the FSL and FRL rats were successfully separated with respect to their anxiety phenotype as well as their heightened response to serotonergic challenge, thus confirming a contribution of both the serotonergic and cholinergic systems to the depressogenic nature of these animals. As concluding remark can be said that under normal basal conditions markers of the NO/cGMP signalling cascade are not altered in FSL vs FRL rats, although cGMP levels are reduced in the frontal cortex of FSL rats, supportive of an NO-independent mechanism of cGMP regulation, possibly involving ACh. / Thesis (M.Sc. (Pharmacology)--North-West University, Potchefstroom Campus, 2009.
164

Regional neurochemical characterization of the flinders sensitive line rat with regard to glutamate-nitric oxide and cGMP signalling pathways / Estella Lily Minnaar.

Minnaar, Estella Lily January 2008 (has links)
The serious nature of MDD has intensified the need to identify and elucidate new neurobiological targets for antidepressant drug action. Depression presents with evidence for degenerative pathology that relates to disturbances in excitatory glutamatergic pathways, particularly the N-methyl-D-aspartate (NMDA) receptormediated release of the pleiotropic molecule, nitric oxide (NO), and cyclic guanosine monophosphate (cGMP). The contribution of the glutamate-NO/cGMP pathway may realize great importance as a fundamental substrate underlying the pathophysiology of major depression. In the next generation of antidepressant drugs, the nitric oxide pathway could playa dynamic role in addressing urgent therapeutic needs. In this study, we have used a genetic model of depression, the Flinders Sensitive Line (FSL) rat, to investigate the surrogate markers of the NO/cGMP pathway. The aim was to determine whether the depressive-like behaviour of the hypercholinergic FSL rat is accompanied by altered activation of the NO/cGMP pathway. To this end, the extent to which the FSL and Flinders Resistant Line (FRL) rats differ neurochemically with regard to basal hippocampal and frontal cortical NOS-activity, as well as nitric oxide (NO) and cGMP accumulation, were determined. Additionally, select behavioural assessments were performed to confirm the anxiogenic phenotype of the FSL strain. For neurochemical determinations a sensitive fluorometric reversed phase highperformance liquid chromatographic (HPLC) assay was developed to analyze total nitrite and nitrate in brain tissue. Nitrate was enzymatically converted to nitrite before derivatization with 2,3-diaminonaphthalene (DAN). The stable and highly fluorescent product, 2,3-naphthotriazole (NAT), was quantified. Secondly, the quantity of the amino acid L-citrulline was measured by HPLC with electrochemical detection after o-phthalaldehyde (OPA) derivatization. L-citrulline formation was used as an index for nNOS activity. Finally, a direct, competitive enzyme immunoassay kit was used to determine the downstream activity of the NO-pathway in brain tissue. FSL rats were compared to FRL rats with respect to sensitivity to serotonin 5-HT1A . receptor-mediated hypothermia under our lab-conditions. The Open Field Test (OFT) behavioural assessment was performed to compare FSL with FRL groups under baseline conditions according to their level of inherent anxiety. The parameters used to measure anxiety were number of line crosses (locomotor activity), time spent in middle blocks and social interaction time between pairs of rats. As an additional behavioural assessment, the Forced Swim Test (FST) was performed to assess behavioural restraint measured as time of immobility. Basal cGMP levels in the frontal cortex were found to be significantly less in FSL than in FRL rats, whereas the levels in the hippocampus did not differ significantly. No other significant differences with respect to NO and nNOS activity were apparent in either of the brain areas. The hypothermia test confirmed a significantly greater decrease in temperature in the FSL rat than the FRL rat. The FST did not confirm any differences in immobility time between the two rat strains. In the OFT, FSL rat groups exhibited behaviour that indicated significantly more anxiety than FRL rats. Under basal conditions, FSL rats do not present with significant changes in markers of the NO cascade in the hippocampus and frontal cortex compared to FRL controls, including NOS activity as well as NO accumUlation. However, cGMP levels were found to be significantly lower in the frontal cortex of FSL rats versus FRL rats, although not in the hippocampus. Since the FSL rat is known to be hypercholinergic, these data support an interaction between the NO/cGMP pathway and the cholinergIc system in the frontal cortex but not hippocampus of FSL animals. The mechanisms and implications of such a mutual involvement need further clarification. Further, this anatomical differentiation may have important implications for understanding the role of NO in the depressive-like behaviour of the FSL rat and, indeed, may reveal more on the neurobiology and treatment of depression. Through the performed behavioural assessments, the FSL and FRL rats were successfully separated with respect to their anxiety phenotype as well as their heightened response to serotonergic challenge, thus confirming a contribution of both the serotonergic and cholinergic systems to the depressogenic nature of these animals. As concluding remark can be said that under normal basal conditions markers of the NO/cGMP signalling cascade are not altered in FSL vs FRL rats, although cGMP levels are reduced in the frontal cortex of FSL rats, supportive of an NO-independent mechanism of cGMP regulation, possibly involving ACh. / Thesis (M.Sc. (Pharmacology)--North-West University, Potchefstroom Campus, 2009.
165

Foregut motility disorders : a clinical and experimental study /

Kjellin, Ann, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 6 uppsatser.
166

On the role of nitric oxide in uterine secretion /

Mörlin, Birgitta, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 4 uppsatser.
167

Modifications of cardiovascular response to ischemia and trauma /

Labruto, Fausto, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 5 uppsatser.
168

Cardioprotective mechanisms by inhibition of the HMG-CoA reductase pathway and stimulation of peroxisome proliferator-activated receptors in myocardial ischaemia-reperfusion /

Bulhak, Aliaksandr, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
169

Macrophage and bone marrow derived monocyte activation during mouse lung tumorigenesis and chronic inflammation /

Redente, Elizabeth Frances. January 2008 (has links)
Thesis (Ph.D. in Toxicology) -- University of Colorado Denver, 2008. / Typescript. Includes bibliographical references (leaves 224-253). Free to UCD Anschutz Medical Campus. Online version available via ProQuest Digital Dissertations;
170

The role and regulation of argininosuccinate synthase in endothelial function /

Goodwin, Bonnie L. January 2005 (has links)
Dissertation (Ph.D.)--University of South Florida, 2005. / Includes vita. Includes bibliographical references (leaves 179-187). Also available online.

Page generated in 0.0821 seconds