• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nitration of Oxo-pyramidines and Oxo-imidazoles

Langlet, Abraham January 2006 (has links)
This thesis is mainly focused on the reactions of oxo-pyrimidines and oxo-imidazoles with nitric acid in sulfuric acid and properties of the gem-dinitro products formed in this process. Low temperature nitrations of 2-methylimidazoles produced – in addition to the known 2-methyl-5(4)-nitroimidazole – 2-(dinitromethylene)-5,5-dinitro-4-imidazolidinone and parabanic acid. This tetranitro compound was also obtained via nitration of 2-methyl-4,4-dihydro-(1H)-5- imidazolone. Thermal decomposition of 2-(dinitromethylene)-5,5-dinitro-4-imidazolidinone yielded 2-(dinitromethylene)-4,5-imidazolidinedione, which also was the product from the nitration of the new compound 2-methoxy-2-methyl-4,5-imidazolidienedione. Treatment of 2- (dinitromethylene)-5,5-dinitro-4-imidazolidinone with aqueous ammonia resulted in the previously unknown 1,1-diamino-2,2-dinitroethylene (Paper I). The nitration of some 2-substituted pyrimidine-4,6-diones in sulfuric acid, which afforded previously unknown 5,5-gem-dinitro-pyrimidine-4,6-diones in high yields, was studied. Alloxane was prepared in a one-step procedure by thermal decomposition of 5,5-dinitrobarbituric acid in hot acetic acid. The gem-dinitro products were found to be easily attacked by nucleophiles with concomitant formation of gem-dinitroacetyl derivatives, which in turn could be further hydrolysed to salts of dinitromethane and triureas (Papers II and III). Nitration of 4,6-dihydroxypyrimidine in sulfuric acid yielded nitroform as the sole product. This behaviour was tentatively explained by the formation of an intermediate, 5,5-dinitro-4,6- dihydroxypyrimidine, which underwent hydrolysis in the nitrating acid into gem-dinitroacetyl formamidine. This compound was further nitrated in the same reaction mixture into trinitroacetylformamidine, which finally underwent hydrolytic cleavage into nitroform. It was also demonstrated that gem-dinitroacetylureas could produce nitroform upon nitration. The structures of the proposed trinitroacetylureas were confirmed by the isolation of one of their derivatives (Paper IV). / QC 20100907

Page generated in 0.0302 seconds