Spelling suggestions: "subject:"anitrogen depletion"" "subject:"initrogen depletion""
1 |
Subcellular modification and nutrient remobilization during Brassica napus leaf senescence : effects of abiotic stresses / Organisation subcellulaire et remobilisation métabolique lors de la senescence foliaire chez le colza en réponse aux stress abiotiquesSorin, Clément 10 December 2014 (has links)
Brassica napus est une des cultures oléagineuse majeure dans le monde. En raison de sa faible efficacité d’utilisation de l’azote (NUE) comparée aux autres grandes cultures, la gestion de cette ressource présente un objectif écologique et économique majeur pour cette culture. La remobilisation des nutriments des organes sources vers les organes puits est une composante de la NUE qui se déroule durant la sénescence et qui est associée aux processus de recyclages métaboliques et à des modifications de la structure foliaire. L’objectif de cette thèse était de comprendre et de quantifier ces modifications structurales afin d’évaluer à travers ces processus les capacités de remobilisation du colza en fonction de son génotype et de son statut nutritionnel (eau et azote). La structure foliaire a été étudiée grâce à la relaxométrie RMN qui donne accès au statut et à la distribution de l’eau au niveau cellulaire. Ces travaux de thèse ont mis en évidence que la distribution des temps de relaxation transversale (T2) dépend non seulement de la structure cellulaire, mais aussi de l’organisation tissulaire. Cette étude a aussi mis en évidence le processus d’élargissement cellulaire et d’hydratation pendant la sénescence, spécifiquement dans le parenchyme palissadique. Il a été également démontré que le signal RMN reflète la déstructuration progressive se déroulant durant la sénescence au niveau subcellulaire et est un marqueur de sénescence précis permettant de suivre le développement de la feuille. De plus, le statut nutritionnel de la plante modifié par les carences azotées ou le stress hydrique, impacte grandement la sénescence séquentielle et les conséquences en termes d’efficacité de la remobilisation peuvent être suivies par RMN. Ce travail a permis de renforcer les connaissances sur la structure et le fonctionnement de la feuille au niveau tissulaire et cellulaire. De plus, il a été démontré que le signal de relaxométrie RMN donne accès à des informations sur la structure foliaire inaccessible par des méthodes courantes. Une des principales applications de ce travail serait le phénotypage, particulièrement la sélection de génotypes caractérisés par une forte efficacité de remobilisation en particulier en cas de carence azoté ou de stress hydrique. / Brassica napus is one of the major oil crops of the world. Due to its low NUE (Nitrogen Use Efficiency) compared to other species, Nitrogen management presents a major economic and environmental goal for improvement of that crop production. As a component of NUE, nutrient remobilization from source to sink tissues takes place mainly during the leaf senescence and is associated to metabolic recycling processes and modification of the cellular organization and structure. The aim of this work was therefore to understand and estimate the amplitude of these structural modifications with the objective to appreciate through these processes remobilization performance according to oilseed rape genotypes and nutritional status in terms of nitrogen and water supply. The leaf structure was investigated through NMR relaxometry, providing access to cellular water status and distribution. The present work demonstrated that the transverse relaxation time (T2) distribution depends on both leaf tissue structure and cellular compartmentalization. The study revealed a process of cell enlargement and hydration during leaf senescence, specifically in the palisade parenchyma and showed that the T2 relaxation time was able to discriminate parenchyma tissues at an early phase of senescence induction. Moreover, the NMR relaxometry signal was shown to reflect specific chronological loss of sub-cellular structuring all along the senescence process progression and was demonstrated to be an accurate non-invasive monitoring method of leaf development. Finally, plant nutrition status experienced through nitrogen and water availability limitation has been demonstrated to strongly affect regular sequential leaf senescence. Consequences on remobilization efficiency by stress conditions have been also assessed through the NMR signal. This work has improved the understanding of leaf structure and functioning at the cell and tissue levels after the onset and during the progression of senescence. Moreover, it was demonstrated that NMR relaxometry provides access to leaf structural information that are not accessible with currently used techniques for plant structural investigations. One of the main applications would be for plant phenotyping, especially for selecting genotypes with higher nutrient remobilization efficiency especially under environmental stresses like nitrogen and water limitations for sustainable oil and protein production.
|
2 |
Lipid Production by Microalgae Treating Municipal WastewaterKelley, James Edward 01 December 2013 (has links) (PDF)
Microalgae hold much promise as a feedstock in liquid biofuel production. Lipid content of microalgae cells range from 30-80% dry weight of biomass. It is projected that microalgae can produce between 1,000-6,500 gallons/acre/year of oil. Currently, production of industrial algae operates in open raceway ponds that use minimal capital and energy inputs to culture algae. Raceway ponds can also be used to grow microalgae from municipal waste streams. Although high biomass productivity can be achieved in these systems, there remains a large production gap between large volumes of biomass cultivation and high lipid content from microalgae cells. Low lipid content has been ameliorated through laboratory manipulations of nitrogen availability and light intensity. This two-part project measured microalgae lipid levels in open raceway ponds located at the San Luis Obispo Water Reclamation Facility (SLO WRF) grown in primary clarifier effluent and then performed nitrogen depletion and light-shift methods on cultures to increase triglyceride (TAG) content. The raceway ponds reached maximum biomass productivity of 24 g/m2-day, but with minimal TAG reserves. Optimization of both biomass productivity and TAG content can be achieved in April and September with 13 g/m2-day productivity and 13% TAG content. Investigation of increased TAG production responses were performed on wastewater microalgae (predominately Scenedesmus sp.) through N-depletion and three light treatments: light-shift on day 3 (before N-depletion), light-shift on day 5 (near N-depletion), and a double-illumination treatment. Highest levels of TAG content were observed in the double-illumination treatment and reached a maximum of 49% TAG in 9 days.
|
Page generated in 0.0944 seconds