• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Systems toxicology identifies mechanistic impacts of 2-amino-4, 6-dinitrotoluene (2A-DNT) exposure in Northern Bobwhite

Gust, Kurt A., Nanduri, Bindu, Rawat, Arun, Wilbanks, Mitchell S., Ang, Choo Y., Johnson, David R., Pendarvis, Ken, Chen, Xianfeng, Quinn, Michael J., Johnson, Mark S., Burgess, Shane C., Perkins, Edward J. January 2015 (has links)
BACKGROUND: A systems toxicology investigation comparing and integrating transcriptomic and proteomic results was conducted to develop holistic effects characterizations for the wildlife bird model, Northern bobwhite (Colinus virginianus) dosed with the explosives degradation product 2-amino-4,6-dinitrotoluene (2A-DNT). A subchronic 60d toxicology bioassay was leveraged where both sexes were dosed via daily gavage with 0, 3, 14, or 30 mg/kg-d 2A-DNT. Effects on global transcript expression were investigated in liver and kidney tissue using custom microarrays for C. virginianus in both sexes at all doses, while effects on proteome expression were investigated in liver for both sexes and kidney in males, at 30 mg/kg-d. RESULTS: As expected, transcript expression was not directly indicative of protein expression in response to 2A-DNT. However, a high degree of correspondence was observed among gene and protein expression when investigating higher-order functional responses including statistically enriched gene networks and canonical pathways, especially when connected to toxicological outcomes of 2A-DNT exposure. Analysis of networks statistically enriched for both transcripts and proteins demonstrated common responses including inhibition of programmed cell death and arrest of cell cycle in liver tissues at 2A-DNT doses that caused liver necrosis and death in females. Additionally, both transcript and protein expression in liver tissue was indicative of induced phase I and II xenobiotic metabolism potentially as a mechanism to detoxify and excrete 2A-DNT. Nuclear signaling assays, transcript expression and protein expression each implicated peroxisome proliferator-activated receptor (PPAR) nuclear signaling as a primary molecular target in the 2A-DNT exposure with significant downstream enrichment of PPAR-regulated pathways including lipid metabolic pathways and gluconeogenesis suggesting impaired bioenergetic potential. CONCLUSION: Although the differential expression of transcripts and proteins was largely unique, the consensus of functional pathways and gene networks enriched among transcriptomic and proteomic datasets provided the identification of many critical metabolic functions underlying 2A-DNT toxicity as well as impaired PPAR signaling, a key molecular initiating event known to be affected in di- and trinitrotoluene exposures.
2

Coupled solid phase extraction-supercritical fluid extraction on-line gas chromatography of explosives from water /

Slack, Gregory C., January 1992 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1992. / Vita. Abstract. Includes bibliographical references (leaves 156-157). Also available via the Internet.

Page generated in 0.0423 seconds