• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1193
  • 279
  • 274
  • 245
  • 121
  • 117
  • 54
  • 42
  • 18
  • 13
  • 10
  • 9
  • 7
  • 6
  • 3
  • Tagged with
  • 2828
  • 539
  • 497
  • 430
  • 353
  • 352
  • 298
  • 296
  • 282
  • 275
  • 251
  • 247
  • 233
  • 189
  • 175
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
751

Analysis of crystalline ammonium hexafluorophosphate using nuclear magnetic resonance force microscopy (NMRFM) and design and construction of a dynamical room-temperature NMRFM microscope

Cárdenas, Rosa Elia, 1980- 31 October 2011 (has links)
In this dissertation I explain the theoretical and experimental details of nuclear magnetic resonance force microscopy (NMRFM). I report the data that I have collected on ammonium hexafluorophosphate at room temperature using NMRFM. This experiment measured cantilever deflection as a function of applied magnetic field. I also report on the progress of a new dynamical room-temperature NMRFM microscope. I describe the new probe and its advantages over the previous generation probe and I show the current calibration measurements. / text
752

Extraction of orbitides from flaxseed

2014 February 1900 (has links)
The goal of this project is to establish an efficient and economical industrial process for extraction of a Kaufmann and Tobschirbel orbitide (KT) mixture from flaxseed oil. KTs occur at a low level in flaxseed oil and must be concentrated at least 600 fold to produce a useful commercial concentrate. KT peptides are more polar than most lipids may be separated using solid- or liquid- phase extractants. Extraction protocols were investigated to determine a better approach for KT peptide extraction. Commercial solid-phase extraction methods would require the adaptation of bench-scale silica flash column chromatography. The first approach was to develop methods for separation of peptides using only silica, ethyl acetate and ethanol. Ethyl acetate is known to remove both oil and peptides from silica. Therefore, the ability of low temperature to decrease the peptide elution from silica was studied. The other method utilized liquid-liquid extraction. In order to measure the success of an extraction an analytical method was required to evaluate the separation of peptides from oil. An analytical procedure was developed that readily determined the relative concentration of peptide and lipid. Aqueous and anhydrous ethanol partitioning was used to extract the KT mixture from flaxseed oil. Ethanol solutions between 50 and 100% in water (v/v) were mixed with flaxseed oil. The oil and peptide content of the extracts were determined using 1H-NMR. Liquid-liquid extraction using 70% aqueous ethanol at volume ratio (solvent to oil) of 0.25:1 produced a mole ratio of 2:1 (KTs to oil) making it the optimal solvent for KT extraction. In the second part of this project, the scale of liquid-liquid extraction was increased through several 10 to 30-fold steps to establish a potential industrial extraction process for recovery of the KT mixture. The feasibility of processing the solvent containing mixed peptides was investigated. Multiple evaporation and adsorption methods were also tested, including falling film evaporation, rotary evaporation, a combination of rotary evaporation and freeze drying, and a combination of rotary evaporation and spray drying. Various experimental methods to enrich and isolate KTs from water-rich fraction were performed. At the end of this project, 3328.89 g of KT mixture was produced that was suitable for commercial purposes. The increase of extraction scale was 140,000 fold.
753

Development and Evaluation of Exchange Rate Measurement Methods

Randtke, Edward Alexander January 2013 (has links)
Exchange rate determination allows precise modeling of chemical systems, and allows one to infer properties relevant to tumor biology such as enzyme activity and pH. Current exchange rate determination methods found via Contrast Enhanced Saturation Transfer agents are not effective for fast exchanging protons and use non-linear models. A comparison of their effectiveness has not been performed. In this thesis, I compare the effectiveness of current exchange rate measurement methods. I also develop exchange rate measurement methods that are effective for fast exchanging CEST agents and use linear models instead of non-linear models. In chapter 1 I review current exchange rate measurement methods. In chapter 2 I compare several of the current methods of exchange rate measurement, along with several techniques we develop. In chapter 3 I linearize the Quantifying Exchange through Saturation Transfer (QUEST) measurement method analogously to the Omega Plot method, and compare its effectiveness to the QUEST method. In chapter 4, I compare the effectiveness of current exchange rate theories (Transition State Theory and Landau-Zener theory) in the moderate coupling regime, and propose our own combined Eyring-Landau-Zener theory for this intermediate regime. In chapter 5 I discuss future directions for method development and experiments involving exchange rate determination.
754

Glycopeptide and Phosphopeptide Analogs of DAMGO: A Study on the Role of Amphipathicity to Promote Blood Brain Barrier Penetration

Yeomans-Maldonado, Larisa January 2009 (has links)
Glycosylation may be a general strategy for the transport of biologically active neuro(glyco)peptides into the brain. With that in mind, a series of modified DAMGO analogues were synthesized and subjected to conformational analysis, and in vitro and in vivo studies related to opioid analgesia. Those studies will help to determine the balance of carbohydrate and peptide, to reach maximum BBB transport; in other words this is a study to test the biousian hypothesis. 1) The μ-agonist DAMGO was altered by incorporating moieties of increasing water solubility into the C-terminus, including carboxamide and simple glycosides. The hydrophilic C-terminal moieties were varied from glycinol in DAMGO to L-serine amide (LYM100), L-serine amide β-D-xyloside (LYM50), L-serine amide β-Dglucoside (LYM110), L-serine amide β-lactoside (LYM147). Two phosphopeptides LYM1311 and LYM1312 were synthesized with the phosphate group attached to Lserine amide at the C-terminus. Conformational analysis experiments included: 1HNMR, diffusion, variable temperature experiments to find the temperature coefficient, circular dichroism, 2DNMR noesy and tocsy, and molecular modeling. The peptides associate with SDS micelles with a strong electrostatic component. The SDS micelles stabilized the β-turn that is nascent in water. CSI (chemical shift indexes), temperature coefficients and circular dichroism do not give much insight into the structural conformation. 2D NMR analysis followed by molecular modeling confirmed a β-turn preferred conformation. No specific type of β-turn could be assigned to the DAMGO analogs. 2) Antinociceptive mouse tail-flick studies were performed, and opioid binding was determined. Analgesic potency (i.v.) increased, passing through a maximum (A₅₀ ≈ 0.2 μmol/Kg) for LYM100 & LYM50 as membrane affinity vs. water solubility became optimal, and then dropped off (A₅₀ ≈ 1.0 μmol/Kg) for LYM110 & LYM147 as water-solubility dominated the molecular behavior. Correlation of i.v. A₅₀ values with estimated hydrodynamic values (glucose units) for the glycoside moieties, or the hydrophilic/hydrophobic Connolly surface areas (A₅₀ vs e^(-Awater/Alipid)), provided U-shaped or V-shaped curves, as predicted by the “biousian hypothesis.” The μ-selective opioid agonism was maintained upon modifications at the C-terminus. The optimal “degree of glycosylation” that achieves the maximum degree of transport for the DAMGO peptide message seems to be between the peptide with the carboxamide C-terminal group and the xyloside.
755

Development and application of NMR methods for challenges in drug discovery

Pilger, Jens 02 April 2013 (has links)
No description available.
756

Advanced NMR Methodology for the Investigation of Organometallic Compounds in Solution

Pöppler, Ann-Christin 24 June 2013 (has links)
No description available.
757

STRUCTURE AND TUNING PATTERN IN THE IONIC DOUBLE CLATHRATE HYDRATES

Shin, Kyuchul, Cha, Jong-Ho, Choi, Sukjeong, Lee, Huen 07 1900 (has links)
A number of notable studies on pure ionic clathrate hydrates have utilized their unique ionic characteristics for electric applications, including their use as an electrolyte for nickel-metal hydride batteries. Although quaternary ammonium salt hydrates have recently been applied to gas separation and storage areas with the expectation of the small co-guest occupancy in empty cages, most of the researches have been oriented to macroscopic approaches based on hydrate phase equilibria and many other process variables. On the other hand, spectroscopic analyses for identifying the structure transition of ionic clathrate hydrates together with a comprehensive consideration of their complex phase patterns have not yet been reported in spite of their importance to the energy and environmental fields. Accordingly, in this study, we present the report of an extraordinary structural transition accompanying the occurrence of more than two coexisting clathrate hydrate phases and channel-induced tuning pattern in ionic double hydrate systems. In particular, the tuning observation uniquely occurring in the ionic clathrate hydrates is quite surprising, even though the tuning behavior is more commonly observed in the non-ionic hydrate systems. The remarkable feature of this work is that the icy ionic hydrate materials can be effectively used in energy devices. Moreover, the microscopic analyses of ionic clathrate hydrates for identifying the physicochemical characteristics are expected to provide new insights into a variety of inclusion chemistry fields.
758

On single-crystal solid-state NMR based quantum information processing

Moussa, Osama January 2010 (has links)
Quantum information processing devices promise to solve some problems more efficiently than their classical counterparts. The source of the speedup is the structure of quantum theory itself. In that sense, the physical units that are the building blocks of such devices are its power. The quest then is to find or manufacture a system that behaves according to quantum theory, and yet is controllable in such a way that the desired algorithms can be implemented. Candidate systems are benchmarked against general criteria to evaluate their success. In this thesis, I advance a particular system and present the progress made towards each of these criteria. The system is a three-qubit 13C solid-state nuclear magnetic resonance (NMR) based quantum processor. I report results concerning system characterization and control, pseudopure state preparation, and quantum error correction. I also report on using the system to test a central question in the foundation of quantum mechanics.
759

Structural and Conformational Studies of Oligo- and Polysaccharides

Zaccheus, Mona January 2012 (has links)
The focus of this thesis is to examine the structural properties of polysaccharides produced by bacteria, as well as the dynamic and conformational behavior of a synthetically derived oligosaccharide. The primary structures of the O-polysaccharide repeating units of four different Escherichia coli (E. coli) strains, namely O175, O177, O103 and TD2158, as well as the first report of a capsular polysaccharide produced by lactic acid bacteria Leuconostoc mesenteroides ssp. cremoris PIA2 are reported in paper I–V. Structural analyses have been performed using a combination of nuclear magnetic resonance spectroscopy and chemical component analysis. The elucidated structures in paper I–III, as well as paper V, are composed of linear repeating units of varying composition and length. In paper IV, the structure of the O-polysaccharide repeating unit of E. coli TD2158 is determined to be a branched hexasaccharide structure with a heterogeneous substitution pattern, with either a β-GlcpNAc or β-Glcp residue branching to the backbone chain. Incubation with bacteriophage HK620 tailspike protein shows that the polysaccharide is selectively cleaved at the α-GlcpNAc-(1→2)-α-Rhap-linkage of the backbone chain, yielding a 9:1 ratio of β-GlcpNAc/β-Glcp containing hexasaccharides after digestion. In paper VI the conformational properties of a trisaccharide, which constitutes an internal epitope of the LeaLex hexasaccharide over-expressed on the surface of squamous lung cancer cells, have been analyzed using NMR spectroscopy and molecular dynamics simulations. The β-(1→3)-linkage of the trisaccharide was shown to be highly flexible. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Submitted. Paper 6: Submitted.</p>
760

Rheo-NMR and synchrotron X-ray diffraction characterization of nanostructures of triglycerides crystallizing from solutions

20 April 2011 (has links)
The characteristics of crystallized fats depend on their solid fraction (SF) and fractal structures, which are affected by shear during crystallization. Binary mixtures of trilaurin (LLL) and trimyristin (MMM) diluted in triolein were used as samples. Pure diluted LLL and MMM were also studied. Samples were examined at different crystallization temperatures either statically or at shear rates of 800, 80, and 8 1/s. The sample cell combined a rheometer with a nuclear magnetic resonance (NMR) device to measure SF value and apparent viscosity. The measurements were compared to equations that describe the dependency of viscosity on solid volume fraction, to understand the effect of crystallites orientation at higher shear rates. Phase transitions during crystallization were observed by time-resolved synchrotron X-ray diffraction under similar conditions. Shear induced a strong reduction in phase onset and transition time and variations in phase distributions and the crystal size.

Page generated in 0.057 seconds