• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Invariants topologiques des orbites périodiques d'un champ de vecteurs

Dehornoy, Pierre 23 June 2011 (has links) (PDF)
Cette thèse se situe à l'interface entre théorie des nœuds et théorie des systèmes dynamiques. Le thème central consiste, étant donné un champ de vecteurs dans une variété de dimension 3, à considérer ses orbites périodiques, et à s'interroger sur les informations qu'elles donnent sur le champ de vecteurs et la variété initiaux.La première partie est consacrée au flot géodésique défini sur le fibré unitaire tangentd'une surface, ou d'une orbiface, à courbure constante. L'observation de certains exemples (sphère, tore, surface modulaire) suggère la conjecture suivante, due à Étienne Ghys : l'enlacement entre deux familles homologiquement nulles quelconques d'orbites périodiques est toujours négatif. En d'autres termes, le flot géodésique serait lévogyre. Quand la courbure est négative, par les travaux de David Fried sur les flots d'Anosov, cette conjecture implique une propriété étonnante et très particulière : n'importe quelle collection homologiquement nulle d'orbites périodiques borde une section de Birkhoff pour le flot géodésique, et est par conséquent la reliure d'un livre ouvert. En ce sens, cette conjecture propose une généralisation de la construction de Norbert A'Campo de livres ouverts sur les fibrés unitaires tangents. Nous proposons la démonstration de cette conjecture dans les cas du tore, des orbifolds de type (2, q, infini), et de l'orbifold de type (2, 3, 7). La seconde partie est consacrée au comportement asymptotique des invariants des nœuds formés par les orbites périodiques d'un champ de vecteur, quand la longueur de l'orbite tend vers l'infini. Le but est de définir des invariants de champs de vecteurs stables par difféomorphisme. Dans le cas particulier des nœuds de Lorenz, nous montrons que les racines du polynôme d'Alexander admettent un comportement particulier : elles s'accumulent au voisinage du cercle-unité.
2

Invariants topologiques des orbites périodiques d'un champ de vecteurs / Topological invariants of the periodic orbits of a vector field

Dehornoy, Pierre 23 June 2011 (has links)
Cette thèse se situe à l’interface entre théorie des nœuds et théorie des systèmes dynamiques. Le thème central consiste, étant donné un champ de vecteurs dans une variété de dimension 3, à considérer ses orbites périodiques, et à s’interroger sur les informations qu’elles donnent sur le champ de vecteurs et la variété initiaux.La première partie est consacrée au flot géodésique défini sur le fibré unitaire tangentd’une surface, ou d’une orbiface, à courbure constante. L’observation de certains exemples (sphère, tore, surface modulaire) suggère la conjecture suivante, due à Étienne Ghys : l’enlacement entre deux familles homologiquement nulles quelconques d’orbites périodiques est toujours négatif. En d’autres termes, le flot géodésique serait lévogyre. Quand la courbure est négative, par les travaux de David Fried sur les flots d’Anosov, cette conjecture implique une propriété étonnante et très particulière : n’importe quelle collection homologiquement nulle d’orbites périodiques borde une section de Birkhoff pour le flot géodésique, et est par conséquent la reliure d’un livre ouvert. En ce sens, cette conjecture propose une généralisation de la construction de Norbert A’Campo de livres ouverts sur les fibrés unitaires tangents. Nous proposons la démonstration de cette conjecture dans les cas du tore, des orbifolds de type (2, q, infini), et de l’orbifold de type (2, 3, 7). La seconde partie est consacrée au comportement asymptotique des invariants des nœuds formés par les orbites périodiques d’un champ de vecteur, quand la longueur de l’orbite tend vers l’infini. Le but est de définir des invariants de champs de vecteurs stables par difféomorphisme. Dans le cas particulier des nœuds de Lorenz, nous montrons que les racines du polynôme d’Alexander admettent un comportement particulier : elles s’accumulent au voisinage du cercle-unité. / This thesis deals with interactions between knot theory and dynamical systems. Givena vector field on a 3-manifold, the main idea is to study its periodic orbits from the knottheoretical point of view, and to deduce informations about the vector field and the initial manifold. The first part is devoted to the study of the geodesic flow defined on the unit tangent bundle of a surface, or an orbiface, with constant curvature. Simple examples (sphere, torus, modular surface) suggest the following conjecture, due to Ghys : the linking number of two homologically zero collections of periodic orbits is always negative. In other words, the geodesic flow on any orbiface with constant curvature is left-handed. In the negatively curved case, the work of Fried imply another surprising property : any homologically trivial collection of periodic orbits bound a Birkhoff section for the geodesic flow, and is therefore the binding of an open book decomposition. In this setting, the conjecture is a generalization of A’Campo’s construction of open book decompositions on unit tangent bundles. In our work, we prove the conjectre for the torus, for the orbifolds of type (2, q, oo), and for the orbifold of type (2, 3, 7). The second part is devoted to the asymptotic behaviour of invariants of the knots made by the periodic orbits of a vector field, when the length of the orbits tend to infinity. The goal is to define invariants of the vector field under diffeomorphism. In the case of Lorenz knots, we show that the roots of the Alexander polynomial admit an asymptotic behaviour, namely that they accumulate on the unit circle.

Page generated in 0.0585 seconds