• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DEVELOPMENT AND MODIFICATION OF A GAUSSIAN AND NON-GAUSSIAN NOISE EXPOSURE SYSTEM

Schlag, Adam Wayne 01 December 2012 (has links)
Millions of people across the world currently have noise induced hearing loss, and many are working in conditions with both continuous Gaussian and non-Gaussian noises that could affect their hearing. It was hypothesized that the energy of the noise was the cause of the hearing loss and did not depend on temporal pattern of a noise. This was referred to as the equal energy hypothesis. This hypothesis has been shown to have limitations though. This means that there is a difference in the types of noise a person receives to induce hearing loss and it is necessary to build a system that can easily mimic various conditions to conduct research. This study builds a system that can produce both non-Gaussian impulse/impact noises and continuous Gaussian noise. It was found that the peak sound pressure level of the system could reach well above the needed 120 dB level to represent acoustic trauma and could replicate well above the 85 dB A-weighted sound pressure level to produce conditions of gradual developing hearing loss. The system reached a maximum of 150 dB sound peak pressure level and a maximum of 133 dB A-weighted sound pressure level. Various parameters could easily be adjusted to control the sound, such as the high and low cutoff frequency to center the sound at 4 kHz. The system build can easily be adjusted to create numerous sound conditions and will hopefully be modified and improved in hopes of eventually being used for animal studies to lead to the creation of a method to treat or prevent noise induced hearing loss.
2

Porovnání hlučnosti stranových vyústek odlišných konstrukcí / Comparison of noise generated by differently constructed vents

Bernard, Jan January 2019 (has links)
This diploma thesis deals with comparing noise levels of three side vents of different constructions, which are used for distribution and directing of ventilation air in a cabin of an automobile. The fundamental knowledge of the physical and physiological acoustics is described in the introduction part of this study. Following the introduction part there is a brief explanation of the car air conditioning system (HVAC system) as well as are explained the acoustic properties of specific elements of this system. The study also deals with dividing ventilation vents and describes the vast traceable types of automobile vents. Prior to the description of the experiment, which was conducted as a part of this study, the procedures and results of the measurements carried out in other theses are explained. Measurement of noise levels of the compared vents was carried out in a semi-anechoic chamber under the ČSN ISO 3475 standardization. To clarify increase of noise generated by the vent in an interior of an automobile, additional measurement of noise was carried out in a cabin of Porsche Cayenne 2018. From the gathered results we can conclude that under the constant flow, (of 60 square meters per hour) louder vents are those with higher pressure loss. This pressure loss is dependant primarily on the speed of the flow in the vent, as well as on the number and the adjustment of the deflectors. In a cabin of an automobile, the noise produced by the vent is negligible in comparison with total noise in an interior of a car. However, in the area surrounding the air flowing out from the vent, (approximately 0,7 meters from it) the level of acoustic pressure increases significantly.

Page generated in 0.0522 seconds