Spelling suggestions: "subject:"nonuniformly observable lemsystems"" "subject:"nonuniformly observable atemsystems""
1 |
Synthèse d'observateurs pour les systèmes non linéaires, non uniformément observables / Synthesis observers for non uniformly observable nonlinear systemsLtaief, Ali 19 May 2017 (has links)
Les résultats présentés dans cette thèse s’articulent autour de la synthèse d’observateurs de type grand gain pour des classes de systèmes non linéaires multi-entrées, multi-sorties non uniformément observables. Dans un premier temps, la classe de systèmes considérées est telle que la dynamique des variables d’état est décrite par la somme de deux termes. Le premier correspond à une partie affine en l’état décrite par le produit d’une matrice, dont les entrées (fonctions non linéaires de l’état) ont une structure triangulaire, par le vecteur d’état. Le deuxième terme est composé par les non linéarités du système qui ont aussi une structure triangulaire. Le gain de l’observateur proposé est issu de la résolution d’une équation différentielle ordinaire de type Lyapunov.La convergence exponentielle de l’erreur d’observation sous-jacente est établie sous une une certaine condition d’excitation persistante dépendant de l’entrée du système et de l’état de l’observateur.Dans un deuxième temps, la synthèse de cet observateur est étendue à une classe plus large de systèmes non linéaires où des états peuvent intervenir de manière non triangulaire.La notion d’indices caractéristiques associés à ces états est alors introduite et elle a permis de définir une structure triangulaire étendue pour la quelle la synthèse de l’observateur a aussi été effectuée.Enfin, il a été établi que les observateurs proposés peuvent être utiliséscomme observateurs adaptatifs pour l’estimation simultanée de l’état et de certains paramètres et une forme adaptative de ces observateurs a été générée.Les performances des différents observateurs proposés ont été illustrées à travers des exemples en simulation / The results given in this thesis deal with the design of high gain observers for some classes on Multi Input Multi Output non uniformly observable nonlinear systems. In a first step, the class of considered systems is such that the dynamics of the state variables is the sum of two terms. The first term is affine in the state and is composed by the product of a matrix, whose entries are nonlinear functions of the state with a triangular structure, by the state vector. The second term describes the system nonlinearities which also assume a triangular structure. The gain of the proposed observer is issued from the resolution of a Lyapunov ordinary differential equation. The exponential convergence of the underlying observation error is established under a persistent excitation condition involving the system inputs and the state of the observer. In a second step, the observer design has been extended to a larger class of nonlinear systems where some state variables may intervene in a non triangular way. The notion of the characteristic indices associated to these state variables is then introduced and it allowed to define an extended triangular structure for which a high gain observer has been designed. Finally, it has been established that the proposed observers can be used as adaptive ones to jointly estimate the system state together with some unknown parameters and an adaptive form of these observers has been derived. The performance and main properties of the proposed observers have been illustrated in simulation by considering many examples throughout this thesis.
|
2 |
On Cooperative Surveillance, Online Trajectory Planning and Observer Based ControlAnisi, David A. January 2009 (has links)
The main body of this thesis consists of six appended papers. In the first two, different cooperative surveillance problems are considered. The second two consider different aspects of the trajectory planning problem, while the last two deal with observer design for mobile robotic and Euler-Lagrange systems respectively.In Papers A and B, a combinatorial optimization based framework to cooperative surveillance missions using multiple Unmanned Ground Vehicles (UGVs) is proposed. In particular, Paper A considers the the Minimum Time UGV Surveillance Problem (MTUSP) while Paper B treats the Connectivity Constrained UGV Surveillance Problem (CUSP). The minimum time formulation is the following. Given a set of surveillance UGVs and a polyhedral area, find waypoint-paths for all UGVs such that every point of the area is visible from a point on a waypoint-path and such that the time for executing the search in parallel is minimized. The connectivity constrained formulation extends the MTUSP by additionally requiring the induced information graph to be kept recurrently connected at the time instants when the UGVs perform the surveillance mission. In these two papers, the NP-hardness of both these problems are shown and decomposition techniques are proposed that allow us to find an approximative solution efficiently in an algorithmic manner.Paper C addresses the problem of designing a real time, high performance trajectory planner for an aerial vehicle that uses information about terrain and enemy threats, to fly low and avoid radar exposure on the way to a given target. The high-level framework augments Receding Horizon Control (RHC) with a graph based terminal cost that captures the global characteristics of the environment. An important issue with RHC is to make sure that the greedy, short term optimization does not lead to long term problems, which in our case boils down to two things: not getting into situations where a collision is unavoidable, and making sure that the destination is actually reached. Hence, the main contribution of this paper is to present a trajectory planner with provable safety and task completion properties. Direct methods for trajectory optimization are traditionally based on a priori temporal discretization and collocation methods. In Paper D, the problem of adaptive node distribution is formulated as a constrained optimization problem, which is to be included in the underlying nonlinear mathematical programming problem. The benefits of utilizing the suggested method for online trajectory optimization are illustrated by a missile guidance example.In Paper E, the problem of active observer design for an important class of non-uniformly observable systems, namely mobile robotic systems, is considered. The set of feasible configurations and the set of output flow equivalent states are defined. It is shown that the inter-relation between these two sets may serve as the basis for design of active observers. The proposed observer design methodology is illustrated by considering a unicycle robot model, equipped with a set of range-measuring sensors. Finally, in Paper F, a geometrically intrinsic observer for Euler-Lagrange systems is defined and analyzed. This observer is a generalization of the observer proposed by Aghannan and Rouchon. Their contractivity result is reproduced and complemented by a proof that the region of contraction is infinitely thin. Moreover, assuming a priori bounds on the velocities, convergence of the observer is shown by means of Lyapunov's direct method in the case of configuration manifolds with constant curvature. / QC 20100622 / TAIS, AURES
|
3 |
Online trajectory planning and observer based controlAnisi, David A. January 2006 (has links)
<p>The main body of this thesis consists of four appended papers. The first two consider different aspects of the trajectory planning problem, while the last two deal with observer design for mobile robotic and Euler-Lagrange systems respectively.</p><p>The first paper addresses the problem of designing a real time, high performance trajectory planner for aerial vehicles. The main contribution is two-fold. Firstly, by augmenting a novel safety maneuver at the end of the planned trajectory, this paper extends previous results by having provable safety properties in a 3D setting. Secondly, assuming initial feasibility, the planning method is shown to have finite time task completion. Moreover, in the second part of the paper, the problem of simultaneous arrival of multiple aerial vehicles is considered. By using a time-scale separation principle, one is able to adopt standard Laplacian control to this consensus problem, which is neither unconstrained, nor first order.</p><p>Direct methods for trajectory optimization are traditionally based on<i> a</i> <i>priori </i>temporal discretization and collocation methods. In the second paper, the problem of adaptive node distribution is formulated as a constrained optimization problem, which is to be included in the underlying nonlinear mathematical programming problem. The benefits of utilizing the suggested method for online trajectory optimization are illustrated by a missile guidance example.</p><p>In the third paper, the problem of active observer design for an important class of non-uniformly observable systems, namely mobile robotics systems, is considered. The set of feasible configurations and the set of output flow equivalent states are defined. It is shown that the inter-relation between these two sets may serve as the basis for design of active observers. The proposed observer design methodology is illustrated by considering a unicycle robot model, equipped with a set of range-measuring sensors.</p><p>Finally, in the fourth paper, a geometrically intrinsic observer for Euler-Lagrange systems is defined and analyzed. This observer is a generalization of the observer recently proposed by Aghannan and Rouchon. Their contractivity result is reproduced and complemented by a proof that the region of contraction is infinitely thin. However, assuming <i>a</i> <i>priori </i>bounds on the velocities, convergence of the observer is shown by means of Lyapunov's direct method in the case of configuration manifolds with constant curvature.</p>
|
4 |
Online trajectory planning and observer based controlAnisi, David A. January 2006 (has links)
The main body of this thesis consists of four appended papers. The first two consider different aspects of the trajectory planning problem, while the last two deal with observer design for mobile robotic and Euler-Lagrange systems respectively. The first paper addresses the problem of designing a real time, high performance trajectory planner for aerial vehicles. The main contribution is two-fold. Firstly, by augmenting a novel safety maneuver at the end of the planned trajectory, this paper extends previous results by having provable safety properties in a 3D setting. Secondly, assuming initial feasibility, the planning method is shown to have finite time task completion. Moreover, in the second part of the paper, the problem of simultaneous arrival of multiple aerial vehicles is considered. By using a time-scale separation principle, one is able to adopt standard Laplacian control to this consensus problem, which is neither unconstrained, nor first order. Direct methods for trajectory optimization are traditionally based on a priori temporal discretization and collocation methods. In the second paper, the problem of adaptive node distribution is formulated as a constrained optimization problem, which is to be included in the underlying nonlinear mathematical programming problem. The benefits of utilizing the suggested method for online trajectory optimization are illustrated by a missile guidance example. In the third paper, the problem of active observer design for an important class of non-uniformly observable systems, namely mobile robotics systems, is considered. The set of feasible configurations and the set of output flow equivalent states are defined. It is shown that the inter-relation between these two sets may serve as the basis for design of active observers. The proposed observer design methodology is illustrated by considering a unicycle robot model, equipped with a set of range-measuring sensors. Finally, in the fourth paper, a geometrically intrinsic observer for Euler-Lagrange systems is defined and analyzed. This observer is a generalization of the observer recently proposed by Aghannan and Rouchon. Their contractivity result is reproduced and complemented by a proof that the region of contraction is infinitely thin. However, assuming a priori bounds on the velocities, convergence of the observer is shown by means of Lyapunov's direct method in the case of configuration manifolds with constant curvature. / QC 20101108
|
Page generated in 0.0722 seconds