Spelling suggestions: "subject:"nonintrusive load bmonitoring (NILM)"" "subject:"nonintrusive load cemonitoring (NILM)""
1 |
Identification d’appareils électriques par analyse des courants de mise en marche / Analysis of turn-on transient currents for electrical appliances identificationNait Meziane, Mohamed 09 December 2016 (has links)
Le domaine lié à ce travail est appelé « désagrégation d’énergie », où la principale préoccupation est de décomposer, ou désagréger, la consommation globale d’énergie électrique (par exemple, la consommation de tout un ménage) en une consommation détaillée donnée comme information de consommation par usage (par exemple, par appareil). Cette dernière permet d’avoir un retour sur la consommation pour les consommateurs ainsi que pour les fournisseurs et est utile pour permettre des économies d’énergie. Dans ce domaine de désagrégation d’énergie, il existe trois grandes questions auxquelles il faut répondre : qui consomme ? quand ? et combien ? Les recherches menées dans cette thèse se concentrent sur l’identification des appareils électriques, c’est-à-dire la réponse à la première question, en considérant particulièrement des appareils ménagers. À cet effet, nous utilisons le courant transitoire de mise en marche que nous modélisons en utilisant un nouveau modèle que nous avons proposé. De plus, nous utilisons les paramètres estimés de ce dernier pour la tâche d’identification. / The related field to this work is called “energy disaggregation" where the main concern is to break down, or disaggregate, the global electrical energy consumption (e.g. wholehouse consumption) into a detailed consumption given as end-use (e.g. appliance-level) consumption information. This latter gives consumption feedback to consumers and electricity providers and is helpful for energy savings. Three main questions have to be answered in the energy disaggregation field : who is consuming ? when ? and how much ? The research conducted in this thesis focuses on electrical appliances identification, i.e. the who question, considering particularly home appliances. For this purpose, we use the turn-on transient current signal which we model using a new model we proposed and use its estimated model parameters for the identification task.
|
2 |
Rede neural convolucional aplicada à identificação de equipamentos residenciais para sistemas de monitoramento não-intrusivo de carga / Convolutional neural network applied to the identification of residential equipment for non-intrusive load monitoring systemsPENHA, Deyvison de Paiva 03 April 2018 (has links)
Submitted by Kelren Mota (kelrenlima@ufpa.br) on 2018-06-25T18:48:12Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_RedeNeuralConvolucional.pdf: 2088560 bytes, checksum: 6328f6f59bc552055a366b1e4a32793d (MD5) / Approved for entry into archive by Kelren Mota (kelrenlima@ufpa.br) on 2018-06-25T18:48:32Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_RedeNeuralConvolucional.pdf: 2088560 bytes, checksum: 6328f6f59bc552055a366b1e4a32793d (MD5) / Made available in DSpace on 2018-06-25T18:48:32Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_RedeNeuralConvolucional.pdf: 2088560 bytes, checksum: 6328f6f59bc552055a366b1e4a32793d (MD5)
Previous issue date: 2018-04-03 / Este trabalho apresenta a proposta de uma nova metodologia para identificação de equipamentos residenciais em sistemas de Monitoramento Não-Intrusivo de cargas. O sistema é baseado em uma Rede Neural Convolucional para classificação dos equipamentos, que utilizam, diretamente como entradas para o sistema, os dados do sinal transitório de potência de 7 equipamentos obtidos no momento em que estes são ligados em uma residência. A metodologia foi desenvolvida usando dados de um banco de dados público (REED) que apresenta dados coletados a uma baixa frequência (1 Hz). Os resultados obtidos na base de dados de testes apresentam acurácia superior a 90%, indicando que o sistema proposto é capaz de realizar a tarefa de identificação, além disso os resultados apresentados são considerados satisfatórios quando comparados com os resultados já apresentados na literatura para o problema em questão. / This research presents the proposal of a new methodology for the identification of residential equipment in non-intrusive load monitoring systems. The system is based on a Convolutional Neural Network to classify residential equipment, which uses directly as inputs to the system, the transient power signal data of 7 equipment obtained at the moment they are connected in a residence. The methodology was developed using data from a public database (REED) that presents data collected at a low frequency (1 Hz). The results obtained in the test database show an accuracy of more than 90%, indicating that the proposed system is capable of performing the task of identification. In addition, the results presented are considered satisfactory when compared with the results already presented in the literature for the problem in question.
|
Page generated in 0.0943 seconds