• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 44
  • 31
  • 19
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 309
  • 121
  • 91
  • 36
  • 34
  • 30
  • 29
  • 23
  • 23
  • 22
  • 22
  • 21
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Influence of minor Zn addition on the microstructural stability of Sn-0.7 wt% Cu solder after aging and electromigration

Ilha, Bernardo Bortolotto 16 January 2018 (has links)
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2018-10-03T13:26:39Z No. of bitstreams: 1 Bernardo Bortolotto Ilha_.pdf: 35188571 bytes, checksum: cac488e47b7d5a9301e00e7ab4d1ad4b (MD5) / Made available in DSpace on 2018-10-03T13:26:39Z (GMT). No. of bitstreams: 1 Bernardo Bortolotto Ilha_.pdf: 35188571 bytes, checksum: cac488e47b7d5a9301e00e7ab4d1ad4b (MD5) Previous issue date: 2018-01-16 / UNISINOS - Universidade do Vale do Rio dos Sinos / The aging and electromigration (EM) effects were evaluated when up to 0.19 wt.% Zn was added to Sn-0.7 wt.% Cu solder. Currently, the Sn-0.7 wt.% Cu solder is being widely used in the electronic industries due to its advantages of low cost and high temperature applications. However, its usage is also limited by detrimental properties – for instance, when compared to SAC305, Sn-0.7 wt.% Cu solder has lower electromigration life time, shear strength and drop reliability. Minor Zn alloying to Pb-free solders reportedly enhances some of their properties, e.g.: stabilization of bulk microstructures by decreasing undercooling; formation of a thin interfacial diffusion barrier and, thereby, suppressing Cu3Sn and Cu6Sn5 interfacial IMC growth rate and retarding under bump metallurgy (UBM) diffusion through the solder; and also, compensation for Sn self-diffusion due to reverse polarity effect. In this research, the aging and EM effects are assessed when 0.09, 0.16 and 0.19 wt.% Zn were added to Sn-0.7 wt.% Cu solder. The samples underwent up to 500 h of isothermal aging at temperatures of 125, 150 and 175 °C, and EM samples underwent up to 200 h of stressing at a constant temperature of 150 °C and current of 3.25 A. Solder balls were fabricated on a BGA structure for the aging tests, and for the EM tests, a pair of solders was assembled in a daisy-chain structure with organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG) surface finishes. The microstructural evolution and compositional distribution analyses were carried out using optical microscope with brightfield and cross polarized light, scanning electron microscope (SEM), energy dispersive spectrometer (EDS), electron probe micro analyzer (EPMA), and electron backscattered diffraction (EBSD). The addition of Zn suppresses the formation of Cu3Sn IMC and the total interfacial IMC thickness upon aging, and the samples with ENIG had smaller IMC thickness than OSP surface finish. In addition, the grains' microstructure becomes less interlaced and more stable, indicating lower undercooling. The electromigration effects on the microstructure is mainly governed by the relative orientation between the c-axis of Sn grains and the direction of current flow. When parallel, allows cathode UBM and alloying elements diffusion through the solder and formation of IMC, and, when transverse, inhibits this diffusion leading to failure by void formation at the anode UBM/solder interface due to depletion of the UBM and slow Sn self-diffusion.
62

Design of microfluidic multiplex cartridge for point of care diagnostics

Ereku, Luck Tosan January 2017 (has links)
A simple, but innovative microfluidic Lab-on-a-chip (LOC) device which is broadly applicable in point of care diagnostics of biological pathogens was designed, fabricated and assembled utilising explicit microfluidic techniques. The purpose of this design was to develop a cartridge with the capability to perform multiplex DNA amplification reactions on a single device. To achieve this outcome, conventional laboratory protocols for sample preparation; involving DNA extraction, purification and elution were miniaturized to suit this lab-on-a-chip device of 75mm X 50mm cross-sectional area. The extraction process was carried out in a uniquely designed microchamber embedded with chitosan membrane that binds DNA at pH 5.0 and elutes when a different solution at pH 9.0 flows through. Likewise, purification protocol that occurs in the designed waste reservoir is very significant in biomedical field because it is concerned with waste treatment and cartridge disposability, was performed with a super absorbent powder that converts liquid to a gel like substance. This powder is known as sodium polyacrylate, which is also they treated with anti-bacterial chemicals to prevent environmental contamination. Furthermore, this process also employed the use of a passive valve for a precise fluid handling operation involving flow regulation from extraction to waste reservoir. In order to achieve the intended multiplexing function a multiplexer was created to distribute flow simultaneously through a bifurcated network of channels connected to six similar amplification microchambers. Prior to fabrication, computational fluid dynamics (CFD) simulation was utilized at flowrates less than 10μL/s as the means to test the effectiveness of each design components and also to specifically deduct empirical values that can be analyzed to improve or understand the relationship between the fluid and geometrical constraints of the microfluidic modular elements. The device produced was a hybrid cartridge composed of PDMS and glass which is the most widely used materials microfluidics research due to their low cost and simplicity of fabrication by soft lithography technique. The choice of material also took into account the various physical and chemical properties advantages and disadvantages in their bio-medical applications. Such properties include but not limited to surface energy that determines the wetting fluid characteristics, biocompatibility, optical transparency. Subsequently, after a prototype cartridge was developed fluid flow experimentation using liquid coloured dye was used on the fully fabricated cartridge to test the efficacy of its microfluidic functionalities before expensive DNA amplification reagents were utilised at similar flowrates to the CFD simulations. This gave rise to comparison between similar and dissimilar flow Peculiarities in the microfluidic circuit of both experiments. The final experiment was performed with the aid of a recent molecular technique in DNA amplification known as of RPA kit (recombinase polymerase amplification reaction). It involved performing two main reaction experiments; first, was the positive experiment that bears the sample DNA and the latter, negative that served as the control without DNA. In the end, quantitative analysis of results was done using an agarose gel that showed 143 base pairs, for the positive samples, thus validating the amplification experiment.
63

In vitro studies of Thiopurine S-Methyltransferase: Ligand binding interactions and development of a new enzymatic activity assay for TPMTwt, TPMT*6 and TPMT*8

Hemmingsson, Lovisa, Klasén, Johan January 2015 (has links)
Acute lymphoblastic leukemia, one of the most malignant cancer forms in children is commonly treated with the thiopurine 6-mercaptopurine (6-MP) in combination with a high dose of methotrexate (MTX). 6-Mercaptopurine is in the body metabolized by the enzyme thiopurine S-methyltransferase (TPMT). Polymorphic variants of TPMT express different catalytic activities, and for this reason the dosage of 6-MP needs to be individualized. In order to better optimize the treatment it is important to understand how mutations in TPMT affect its enzymatic activity. In this thesis we have investigated how the wild type and two variants of TPMT interact with different ligands using fluorescence and isothermal titration calorimetry. Experiments with MTX, ANS and furosemide resulted in a similar binding strength for the wild type and the variant TPMT*8, while the other variant TPMT*6 showed a slightly weaker binding. A binding affinity for polyglutamated MTX to TPMTwt was also determined which resulted in an almost twice as strong binding compared to MTX. Today’s methods to determine enzymatic activity are either based on radioactivity, time consuming or expensive. As an alternative the use of a spectrophotometric assay using 5-thio-2-nitrobenzoic acid (TNB) was investigated. The method showed positive results and could hopefully be adapted to plate readers in future experiments. Using 5.5’-dithiobis-(2-nitrobenzoic acid) (DTNB, also known as Ellman’s reagent) the amount of accessible thiol groups on the protein was estimated. This revealed a similar relationship between TPMTwt and TPMT*6, while the result for TPMT*8 was inconclusive.
64

Prediction of the processing window and austemperability for austempered ductile iron

Zahiri, Saden H. (Saden Heshmatollah), 1966- January 2002 (has links)
Abstract not available
65

The precipitation hardening response in A1-Mg(-Ag) alloys

Kubota, Masahiro, 1967- January 2001 (has links)
Abstract not available
66

Investigation of mosA, a protein implicated in rhizopine biosynthesis

Phenix, Christopher Peter 15 May 2007
MosA is a protein found in <i>Sinorhizobium meliloti</i> L5-30 and has been suggested to be responsible for the biosynthesis of the rhizopine 3-O-methyl-scyllo-inosamine (3-MSI) from scyllo-inosamine (SI). However, we have shown MosA is a dihydrodipicolinate synthase (DHDPS) catalyzing the condensation of pyruvate with aspartate-β-semialdehyde (ASA). Since the DHDPS reaction occurs through a Schiff base aldol-type mechanism it was proposed that MosA could be an O-methyltransferase utilizing 2-oxo-butyrate (2-OB) as a novel methyl donor. This interesting yet unlikely possibility would explain MosA's role in the biosynthesis of 3-MSI without ignoring its similarity to DHDPS. Alternatively, MosA may have two catalytic domains one of which possesses a novel binding motif for S-Adenosyl methionine (SAM) to account for methyltransfer activity. In vitro demonstration of MosAs methyltransferase activity is required to resolve this apparent contradiction.<p>This dissertation describes the chemical synthesis of the rhizopines, investigation into whether MosA has a direct role in rhizopine biosynthesis and the thermodynamic characterization of compounds interacting with MosA as observed by isothermal titration calorimetry. <p>Initial investigation into MosAs methyltransferase activity began with 2-OBs interaction with the enzyme. Inhibition experiments determined 2-OB is a competitive inhibitor with respect to pyruvate of the DHDPS reaction of MosA. Furthermore, protein mass spectrometry of MosA in the presence of 2-OB and sodium borohydride indicated that a Schiff base enzyme intermediate was indeed being formed providing evidence that the proposed mechanism may exist. However, neither of the rhizopines had any effect on the DHDPS activity and HPLC assays determined that no 3-MSI was being produced by MosA in the presence of SI and 2-OB. Furthermore, HPLC assays failed to detect methyl transfer activity by MosA utilizing the SAM as a methyl donor. <p>Isothermal titration calorimetry provided thermodynamic characterization of the pyruvate and 2-OB Schiff base intermediates formed with MosA. In addition, ITC provided insight into the nature and thermodynamics of (S)-lysines inhibition of MosA. ITC failed to detect any interactions between the rhizopines or SAM with MosA. These results indicate that MosA is only a DHDPS and does not catalyze the formation of 3-MSI from SI as hypothesized in the literature.
67

Modeling On Rayleigh Scattering In Optical Waveguides

Camak, Burak 01 September 2003 (has links) (PDF)
In the last few years, interest in polymer optical fibers (POF) has increased because of their low cost, easy handling and good flexibility even at large diameters. Moreover, optical cables do not have the problem of electromagnetic interference, which gives, for instance, the problem of cross-talk in copper telephone cables. In the usage of current communication and computer systems the yield has gained a big importance and it has seen from studies that light scattering loss is the only loss, which cannot be eliminated entirely. Besides, this loss causes its attenuation loss intrinsically and determines the lower limit of loss in the POF. In this work, the importance and the dependencies of light scattering were studied, and calculations were done in order to find more appropriate polymer for using as core material of POFs. For this aim, a computer program that calculates the light scattering loss of several amorphous polymers and plots the graph of isotropic scattering loss versus isothermal compressibility and total attenuation loss versus wavelength was written.
68

Investigation of mosA, a protein implicated in rhizopine biosynthesis

Phenix, Christopher Peter 15 May 2007 (has links)
MosA is a protein found in <i>Sinorhizobium meliloti</i> L5-30 and has been suggested to be responsible for the biosynthesis of the rhizopine 3-O-methyl-scyllo-inosamine (3-MSI) from scyllo-inosamine (SI). However, we have shown MosA is a dihydrodipicolinate synthase (DHDPS) catalyzing the condensation of pyruvate with aspartate-β-semialdehyde (ASA). Since the DHDPS reaction occurs through a Schiff base aldol-type mechanism it was proposed that MosA could be an O-methyltransferase utilizing 2-oxo-butyrate (2-OB) as a novel methyl donor. This interesting yet unlikely possibility would explain MosA's role in the biosynthesis of 3-MSI without ignoring its similarity to DHDPS. Alternatively, MosA may have two catalytic domains one of which possesses a novel binding motif for S-Adenosyl methionine (SAM) to account for methyltransfer activity. In vitro demonstration of MosAs methyltransferase activity is required to resolve this apparent contradiction.<p>This dissertation describes the chemical synthesis of the rhizopines, investigation into whether MosA has a direct role in rhizopine biosynthesis and the thermodynamic characterization of compounds interacting with MosA as observed by isothermal titration calorimetry. <p>Initial investigation into MosAs methyltransferase activity began with 2-OBs interaction with the enzyme. Inhibition experiments determined 2-OB is a competitive inhibitor with respect to pyruvate of the DHDPS reaction of MosA. Furthermore, protein mass spectrometry of MosA in the presence of 2-OB and sodium borohydride indicated that a Schiff base enzyme intermediate was indeed being formed providing evidence that the proposed mechanism may exist. However, neither of the rhizopines had any effect on the DHDPS activity and HPLC assays determined that no 3-MSI was being produced by MosA in the presence of SI and 2-OB. Furthermore, HPLC assays failed to detect methyl transfer activity by MosA utilizing the SAM as a methyl donor. <p>Isothermal titration calorimetry provided thermodynamic characterization of the pyruvate and 2-OB Schiff base intermediates formed with MosA. In addition, ITC provided insight into the nature and thermodynamics of (S)-lysines inhibition of MosA. ITC failed to detect any interactions between the rhizopines or SAM with MosA. These results indicate that MosA is only a DHDPS and does not catalyze the formation of 3-MSI from SI as hypothesized in the literature.
69

Early Heat Evolution In Natural Pozzolan-incorporated Cement Hydration

Over, Derya 01 August 2012 (has links) (PDF)
Portland cement hydration is an exothermic process. The heat evolved during the hydration process is especially important in mass concrete, and hot and cold weather concreting. Heat of hydration is affected by several factors like chemical composition of cement, fineness of cement and ambient temperature. The major aim of this thesis is to investigate the effect of cement composition and fineness, amount and composition of the fine portion (&lt / 45 &micro / m) of natural pozzolan-incorporated cement on hydration heat. For this purpose, a portland cement and pozzolan-incorporated blended cements containing different amounts of natural pozzolan (trass) were used. The heat of hydration was measured using isothermal calorimetry. The values of heat of hydration for mixtures with different finenesses containing different amounts of added pozzolan were determined. The results obtained were used to find a correlation between the fineness, composition of cement and heat of hydration. According to this study, pozzolan incorporation in small amounts accelerates hydration. A similar effect was obtained for higher pozzolan amounts. Finer cements react faster and result in higher amounts of early heat evolved compared to coarser cements. In addition, it was found that the sum of the heat of hydration values of fine and coarse portion of cements was less than the total heat of hydration of blended cements. Moreover, a satisfactory correlation could not be established between results of isothermal calorimetry, and adiabatic calorimetry, setting time, and strength.
70

Non-isothermal Crystallization Kinetics, Multiple Melting Behaviors and Crystal Structure Simulation of Poly[(ethylene)-co-(trimethylene terephthalate)]s

Ko, Chi-Yun 26 July 2003 (has links)
Non-isothermal crystallization of the PET/PTT copolyesters was studied at five different cooling rates over 1-20oC/min by means of differential scanning calorimetry (DSC). Both the Ozawa equation and the modified Avrami equation have been used to analyze the crystallization kinetics. The non-isothermal kinetics of most copolymers cannot be described by the Ozawa analysis, except the copolyester with a composition of 66.3% trimethylene- (TT) and 33.7 %ethylene- terephthalates (ET). It may be due to the inaccuracy of the Ozawa assumptions, such as the secondary crystallization is neglected. From the kinetic analysis using the modified Avrami equation, the Avrami exponents, n, were found to be in the range of 2.43-4.67 that are dependent on the composition of the copolyesters. The results indicated that the primary crystallization of the PET/PTT copolymers followed a heterogeneous nucleation and a spherulitic growth mechanism during the non-isothermal crystallization. In the cases of the copolyesters with either TT or ET less than 10%, we found the molten temperature is a key factor to decide whether the Ozawa equation can be succeeded in analyzing the dynamic crystallization. For the non-isothermal crystallization, a single exothermic peak was detected in each DSC curve regardless of the composition and the cooling rate. It indicated that a single-mode distribution of the crystallite sizes was formed during the cooling process. After the non-isothermal crystallization, the melting behavior of the specimens was monitored by temperature modulated DSC (TMDSC) in the conventional mode and the modulated mode. Multiple endothermic peaks were observed in both modes. The wide-angle X-ray diffraction (WAXD) patterns of these copolymers showed that the peak height became sharper and sharper as the crystallization temperature increased, but the position of the diffraction peaks did not change apparently. It indicated that the multiple melting behaviors did not originate from the melting of the crystals with different structures. The melting behavior of these PET/PTT copolyesters can be explained logically by using the melt-recrystallization model. From the reversing and non-reversing signals of TMDSC, the melting-recrystallization-remelting phenomena were further verified. In addition, a small endothermic peak was found at the highest melting temperature in the reversing thermogram for TT-enriched copolyesters. It is reasonably to believe that this endotherm is attributed to the melting of the crystals that are formed in regime I during the heating scan. The cocrystallization of the PET/PTT copolyesters was studied using DSC and WAXD. A clear endothermic peak in the DSC thermogram was detected over the entire range of copolymer composition. A minimum melting temperature was found for the copolyester with 50% ET. The WAXD patterns of these copolymers can be divided into two groups with sharp diffraction peaks, i.e., PET type and PTT type crystals. The transition of crystal structure between PET type and PTT type occurred around the eutectic composition (50 % ET and TT), determined from the variation of the melting temperature with the composition. In addition, the fiber diagram and the WAXD pattern of the copolyester with the eutectic composition showed a different crystalline structure. These results indicated that the cocrystallization behavior of the PET/PTT copolyesters was isodimorphic.

Page generated in 0.0524 seconds