• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microstructure Development in Magnetite Films via Non-classical Crystallization

January 2018 (has links)
abstract: Polycrystalline magnetite thin films were deposited on large area polymer substrates using aqueous solution based spin-spray deposition (SSD). This technique involved the hydrolysis of precursor salt solutions at low temperatures (70-100°C). The fundamental mechanisms and pathways in crystallization and evolution of the film microstructures were studied as a function of reactant chemistry and reactor conditions (rotation rate, flow rates etc.). A key feature of this method was the ability to constantly supply fresh solutions throughout deposition. Solution flow due to substrate rotation ensured that reactant depleted solutions were spun off. This imparted a limited volume, near two-dimensional restriction on the growth process. Film microstructure was studied as a function of process parameters such as liquid flow rate, nebulizer configuration, platen rotation rate and solution chemistry. It was found that operating in the micro-droplet regime of deposition was a crucial factor in controlling the microstructure. Film porosity and substrate adhesion were linked to the deposition rate, which in-turn depended on solution chemistry. Films exhibited a wide variety of hierarchically organized microstructures often spanning length scales from tens-of-nanometers to a few microns. These included anisotropic morphologies such as nanoplates and nanoblades, that were generally unexpected from magnetite (a high symmetry cubic solid). Time resolved studies showed that the reason for complex hierarchy in microstructure was the crystallization via non-classical pathways. SSD of magnetite films involved formation of precursor phases that subsequently underwent solid-state transformations and nanoparticle self-assembly. These precursor phases were identified and possible reaction mechanisms for the formation of magnetite were proposed. A qualitative description of the driving forces for self-assembly was presented. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2018
2

Synthesis of transition metal phosphate compounds as functional materials

Stephanos, Karafiludis 30 May 2024 (has links)
In den letzten Jahrzehnten ist die Rückgewinnung wichtiger Elemente aus Abfallströmen wie Abwässern, Schlämmen und Abraum. Übermäßiger Bergbau, industrielle Prozesse und Überdüngung in der Landwirtschaft setzen Schadstoffe wie Phosphat, Ammonium und Übergangsmetalle in die Umwelt frei und bringen Ökosysteme aus dem Gleichgewicht. In dieser Dissertation wird die Kristallisation von Übergangsmetallphosphatverbindungen (TMPs) aus wässrigen Lösungen untersucht, darunter M-Struvit, M-Dittmarit und M-Phosphat-Octahydrat (NH4MPO4∙6H2O, NH4MPO4∙H2O, M3(PO4)2∙8H2O mit M = Ni, Co, NixCo1-x). Diese kristallinen Phasen ermöglichen die gemeinsame Ausfällung von PO43-, NH4+ und Übergangsmetallen und bieten einen vielversprechenden Weg zur Rückgewinnung von Phosphat und Übergangsmetallen aus industriellen und landwirtschaftlichen Abwässern. TMPs besitzen vielseitige Eigenschaften wie thermische und mechanische Stabilität, einfache Veränderlichkeit und Multifunktionalität, wodurch sie sich für fortschrittliche Energieumwandlungs- und -speicheranwendungen eignen. Deshalb stellt die Synthese von TMPs eine kombinierte Rückgewinnungs- und Upcycling-Methode für fortschrittliche Funktionsmaterialien dar. Detaillierte Untersuchungen des Bildungsprozesses aus wässriger Lösung wurden mit zeitaufgelösten ex- und in-situ-Elektronenbildern, spektroskopischen, spektrometrischen und beugungsbasierten Methoden durchgeführt. Die in dieser Dissertation enthaltenen Ergebnisse geben neue Einblicke in den nicht klassischen Kristallisationsmechanismus von TMPs, der eine kontrollierte Einstellung der Kristallitgröße und -morphologie ermöglicht. Darüber hinaus führt die thermische Behandlung von TMPs zu thermisch stabilen, mesoporösen und/oder protonenleitenden Materialien für elektrochemische Anwendungen. Die Ergebnisse tragen zum grundlegenden Verständnis von Keimbildung und Kristallisationsphänomenen bei und helfen bei der Entwicklung moderner Funktionsmaterialien für elektrochemische Anwendungen. / A critical issue in the 21st century is the recovery of essential elements from waste streams like wastewaters, sludges, and tailings. Excessive mining, industrial processes, and overfertilization in agriculture release pollutants such as phosphate, ammonium, and transition metals into the environment, unbalancing ecosystems. This dissertation investigates the crystallization of transition metal phosphate (TMPs) compounds from aqueous solutions, including M-struvite, M-dittmarite, and M-phosphate octahydrate (NH4MPO4∙6H2O, NH4MPO4∙H2O, M3(PO4)2∙8H2O with M = Ni, Co, NixCo1-x). These crystalline phases allow for the co-precipitation of PO43-, NH4+, and transition metals, providing a promising route for phosphate and transition metal recovery from industrial and agricultural wastewaters. TMPs possess favorable properties like thermal and mechanical stability, tunability, and multifunctionality, making them suitable for advanced energy conversion and storage applications. Accordingly, the synthesis of TMPs represents a combined recovery and upcycling method towards advanced functional materials. Detailed investigations of the formation process from aqueous solution were carried out using time-resolved ex- and in-situ, electron imaging, spectroscopic, spectrometric, and diffraction-based techniques. The results contained in this dissertation reveal new insights into the non-classical crystallization mechanism of TMPs, allowing for controlled adjustment of crystallite size and morphology. Moreover, thermal treatment of TMPs compounds yields thermally stable, mesoporous, and/or proton-conductive materials for electrochemical applications. The findings, on the one hand, can contribute to the fundamental understanding of nucleation and crystallization phenomena in aqueous solutions in general and specifically for metal phosphates. On the other hand, my findings aid applied materials chemistry in the development of advanced functional materials for electrochemical uses.

Page generated in 0.0971 seconds