Spelling suggestions: "subject:"conlinear attributed correlations"" "subject:"conlinear attributes correlations""
1 |
Effective and unsupervised fractal-based feature selection for very large datasets: removing linear and non-linear attribute correlations / Seleção de atributos efetiva e não-supervisionada em grandes bases de dados: aplicando a Teoria de Fractais para remover correlações lineares e não-linearesFraideinberze, Antonio Canabrava 04 September 2017 (has links)
Given a very large dataset of moderate-to-high dimensionality, how to mine useful patterns from it? In such cases, dimensionality reduction is essential to overcome the well-known curse of dimensionality. Although there exist algorithms to reduce the dimensionality of Big Data, unfortunately, they all fail to identify/eliminate non-linear correlations that may occur between the attributes. This MSc work tackles the problem by exploring concepts of the Fractal Theory and massive parallel processing to present Curl-Remover, a novel dimensionality reduction technique for very large datasets. Our contributions are: (a) Curl-Remover eliminates linear and non-linear attribute correlations as well as irrelevant attributes; (b) it is unsupervised and suits for analytical tasks in general not only classification; (c) it presents linear scale-up on both the data size and the number of machines used; (d) it does not require the user to guess the number of attributes to be removed, and; (e) it preserves the attributes semantics by performing feature selection, not feature extraction. We executed experiments on synthetic and real data spanning up to 1.1 billion points, and report that our proposed Curl-Remover outperformed two PCA-based algorithms from the state-of-the-art, being in average up to 8% more accurate. / Dada uma grande base de dados de dimensionalidade moderada a alta, como identificar padrões úteis nos objetos de dados? Nesses casos, a redução de dimensionalidade é essencial para superar um fenômeno conhecido na literatura como a maldição da alta dimensionalidade. Embora existam algoritmos capazes de reduzir a dimensionalidade de conjuntos de dados na escala de Terabytes, infelizmente, todos falham em relação à identificação/eliminação de correlações não lineares entre os atributos. Este trabalho de Mestrado trata o problema explorando conceitos da Teoria de Fractais e processamento paralelo em massa para apresentar Curl-Remover, uma nova técnica de redução de dimensionalidade bem adequada ao pré-processamento de Big Data. Suas principais contribuições são: (a) Curl-Remover elimina correlações lineares e não lineares entre atributos, bem como atributos irrelevantes; (b) não depende de supervisão do usuário e é útil para tarefas analíticas em geral não apenas para a classificação; (c) apresenta escalabilidade linear tanto em relação ao número de objetos de dados quanto ao número de máquinas utilizadas; (d) não requer que o usuário sugira um número de atributos para serem removidos, e; (e) mantêm a semântica dos atributos por ser uma técnica de seleção de atributos, não de extração de atributos. Experimentos foram executados em conjuntos de dados sintéticos e reais contendo até 1,1 bilhões de pontos, e a nova técnica Curl-Remover apresentou desempenho superior comparada a dois algoritmos do estado da arte baseados em PCA, obtendo em média até 8% a mais em acurácia de resultados.
|
2 |
Effective and unsupervised fractal-based feature selection for very large datasets: removing linear and non-linear attribute correlations / Seleção de atributos efetiva e não-supervisionada em grandes bases de dados: aplicando a Teoria de Fractais para remover correlações lineares e não-linearesAntonio Canabrava Fraideinberze 04 September 2017 (has links)
Given a very large dataset of moderate-to-high dimensionality, how to mine useful patterns from it? In such cases, dimensionality reduction is essential to overcome the well-known curse of dimensionality. Although there exist algorithms to reduce the dimensionality of Big Data, unfortunately, they all fail to identify/eliminate non-linear correlations that may occur between the attributes. This MSc work tackles the problem by exploring concepts of the Fractal Theory and massive parallel processing to present Curl-Remover, a novel dimensionality reduction technique for very large datasets. Our contributions are: (a) Curl-Remover eliminates linear and non-linear attribute correlations as well as irrelevant attributes; (b) it is unsupervised and suits for analytical tasks in general not only classification; (c) it presents linear scale-up on both the data size and the number of machines used; (d) it does not require the user to guess the number of attributes to be removed, and; (e) it preserves the attributes semantics by performing feature selection, not feature extraction. We executed experiments on synthetic and real data spanning up to 1.1 billion points, and report that our proposed Curl-Remover outperformed two PCA-based algorithms from the state-of-the-art, being in average up to 8% more accurate. / Dada uma grande base de dados de dimensionalidade moderada a alta, como identificar padrões úteis nos objetos de dados? Nesses casos, a redução de dimensionalidade é essencial para superar um fenômeno conhecido na literatura como a maldição da alta dimensionalidade. Embora existam algoritmos capazes de reduzir a dimensionalidade de conjuntos de dados na escala de Terabytes, infelizmente, todos falham em relação à identificação/eliminação de correlações não lineares entre os atributos. Este trabalho de Mestrado trata o problema explorando conceitos da Teoria de Fractais e processamento paralelo em massa para apresentar Curl-Remover, uma nova técnica de redução de dimensionalidade bem adequada ao pré-processamento de Big Data. Suas principais contribuições são: (a) Curl-Remover elimina correlações lineares e não lineares entre atributos, bem como atributos irrelevantes; (b) não depende de supervisão do usuário e é útil para tarefas analíticas em geral não apenas para a classificação; (c) apresenta escalabilidade linear tanto em relação ao número de objetos de dados quanto ao número de máquinas utilizadas; (d) não requer que o usuário sugira um número de atributos para serem removidos, e; (e) mantêm a semântica dos atributos por ser uma técnica de seleção de atributos, não de extração de atributos. Experimentos foram executados em conjuntos de dados sintéticos e reais contendo até 1,1 bilhões de pontos, e a nova técnica Curl-Remover apresentou desempenho superior comparada a dois algoritmos do estado da arte baseados em PCA, obtendo em média até 8% a mais em acurácia de resultados.
|
Page generated in 0.0987 seconds