• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and control of a pneumatically driven MRI-compatible tele-operated haptic interface

Turkseven, Melih 27 May 2016 (has links)
This study presents methods for understanding, modeling and control of tele-operated pneumatic actuators for rehabilitation in Magnetic Resonance Imaging (MRI). Pneumatic actuators have excellent MRI-compatibility as opposed to conventional electro-mechanical systems; however, the actuator and the system drivers cannot be co-located due to the MRI-compatibility requirements. The actuators are driven via long transmission lines, which affect the system dynamics significantly. Methods provided in this work produced accurate pressure estimation and control by accounting for the pressure dynamics in the lines, which has been neglected by previous work in this area. The effectiveness of the presented modeling and control methods were demonstrated on tele-operation test setups. This research also includes the design of necessary system components for the developed algorithms. An MRI-compatible optical sensor was developed for force feedback and its design was analyzed for high precision. Directions and opportunities for future research are discussed.
2

Leo Satellites: Attitude Determination And Control Components / Some Linear Attitude Control Techniques

Kaplan, Ceren 01 May 2006 (has links) (PDF)
In this thesis, application of linear control methods to control the attitude of a Low-Earth Orbit satellite is studied. Attitude control subsystem is first introduced by explaining attitude determination and control components in detail. Satellite dynamic equations are derived and linearized for controller design. Linear controller and linear quadratic regulator are chosen as controllers for attitude control. The actuators used for control are reaction wheels and magnetic torquers. MATLAB-SIMULINK program is used in order to simulate satellite dynamical model (actual nonlinear model) and controller model. In simulations, the satellite parameters are selected to be similar to the actual BILSAT-1 satellite parameters. In conclusion, simulations obtained from different linear control methods are compared within themselves and with nonlinear control methods, at the same time with that obtained from BILSAT-1 satellite log data.
3

Řešení spojitých systémů evolučními výpočetními technikami / Solution of Continuous Systems by Evolutionary Computational Techniques

Lang, Stanislav January 2018 (has links)
The thesis deals the issue of solution of continuous systems by evolutionary computational techniques. Evolutionary computing techniques fall into the field of softcomputing, an advanced metaheuristics optimization that is becoming more and more a method of solving complicated optimization problems with the gradual increase in computing performance of computers. The solution of continuous systems, or the synthesis of continuous control circuits, is one of the areas where these advanced algorithms find their application. When dealing with continuous systems we will focus on regulatory issues. Evolutionary computing can then become a tool not only for optimization of controller parameters but also to design its structure. Various algorithms (genetic algorithm, differential evolution, etc.) can be used to optimize the parameters of the controller, for the design of the controller structurewe usually encounter so called grammatical evolution. However, the use of grammatical evolution is not necessary if appropriate coding is used, as suggested in the presented thesis. The thesis presents a method of designing the structure and parameters of a general linear controller using the genetic algorithm. A general linear regulator is known also as so called polynomial controller, if we encounter the polynomial theory of control. The method of encoding the description of the general linear controller into the genetic chain is crucial, it determines a set of algorithms that are usable for optimization and influence the efficiency of the calculations. Described coding, effective EVT implementation, including multi-criteria optimization, is a key benefit of this work.

Page generated in 0.0846 seconds