• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation of local mechanical properties in living tissues

Cheng, Qian January 2017 (has links)
The process of a single cell evolving into a complex organism results from a series of coordinated movements of cells and tissues, especially during early embryo development. Although a wealth of morphological data characterises the shapes and movements of cells in embryos, how these movements are driven, patterned and controlled, and how this patterning is related to the mechanical properties of tissues remains unknown. Four-pole electromagnetic tweezers have been developed to probe the mechanical properties of living embryonic tissues that are undergoing active morphogenetic development. The device is capable of generating magnetic forces in the order of nano-Newtons on a grafted magnetic bead. The local passive mechanical properties of the tissues can be characterised by measuring the three-dimensional bead movement and analysing cell shape changes and cell rearrangement in response to this externally applied force. The magnetic device is used to probe the rheology in early zebrafish embryos between high stage (3.3 hpf) and the onset of gastrulation (5.3 hpf) when rapid cell cycles give way to a hollow sphere of cells. The tissue response to the applied force is modelled as linear visco- elastic. The embryo becomes stiffer and more viscous during this period of development, showing that a loose collection of cells becomes cohesive tissues. A computational model is used to explore how cells respond to local or global mechanical perturbations in two systems. First, the model simulates the movement of the bead within an embryo, and the results illustrate the generation, patterning and relaxation of the local cell stress around the bead. Second, the model reproduces the autonomous changes in mitotic cells within a stretched monolayer, and the results show that propensity of cells to divide along their long axis facilitates stress relaxation and contributes to tissue homoeostasis.
2

Straddling the jamming transition : non-local rheology and acoustics in dry granular media / De part et d'autre de la transition de brouillage : rhéologie et acoustique non locales en milieu granulaire sec

Izzet, Adrien 16 May 2017 (has links)
Les milieux granulaires, dans leur état dense, se présentent sous la forme deux régimes, un régime « solide » qui représente un état bloqué des particules et un régime fluide. La première partie de ce travail porte sur le régime fluide du milieu granulaire. Dans un premier temps, le modèle de rhéologie non-locale y est présenté et discuté au regard des modèles proposés dans la communauté. Afin de tester le modèle sur un système réel, nous présentons une expérience d’avalanche dans un canal étroit, dans lequel l’état de contrainte est hétérogène et permet ainsi de faire coexister les deux régimes. L’ajustement du modèle pose la question de la définition des conditions aux limites. Nous présentons alors une étude numérique par simulation de dynamique moléculaire en plan incliné afin d’ajuster le modèle et mesurer la condition à la surface libre. La seconde partie de la thèse porte sur le régime bloqué du milieu granulaire et plus précisément sur la mesure des modules élastiques proche de la transition. A la limite de rigidité du matériau, les propriétés élastiques disparaissent mais le module élastique en cisaillement s’annule plus vite que le module en compression. Ainsi, nous présentons une étude de propagation d’ondes acoustiques en compression permettant de mesurer les modules élastiques à des pressions de confinement évanescentes, au moyen de vols paraboliques. Nous proposons un modèle de contact inter-particulaire permettant d’expliquer la dépendance du module élastique à la pression et ainsi d’appréhender les différentes lois d’échelles évoquées dans la littérature. Enfin, nous présentons des résultats préliminaires portant sur la propagation d’ondes de cisaillement. / In their dense state, granular media can either flow like fluids or behave like solids, when they are jammed. The first part of this thesis deals with the flowing regime. We begin by presenting the non-local rheology and discuss this model with respect to the other ones proposed in the community. In order to probe this model, we perform experimental measurements of the velocity profile in an avalanche flow in a narrow channel. This setup allows to observe both the fluid regime and the creep of the supposedly jammed region, in the depth of the channel. We probe the non-local model on the experimental results. The fit of the theory raises the question of the definition of the boundary conditions on such system. We therefore perform molecular dynamic simulations on an incline plane setup in order to fit the non-local model and measure the free surface boundary condition.The second part of this thesis investigates the elastic properties of jammed granular media weakly confined. Near the rigidity (jamming) transition of the medium, elastic moduli decrease and exhibit different scaling laws in their dependence on the confining pressure. We therefore perform acoustic measurements of compression waves at vanishing pressures, by the mean of parabolic flights. We then revisit the model of inter-particle contacts. This enables to predict the elastic behavior of the medium over a wide range of pressures: from evanescent to high pressures, at which the prediction from the mean field approach using the Hertz contact model has been shown to be valid. Last, we present preliminary results of shear wave propagations.

Page generated in 0.0388 seconds