• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 17
  • 17
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 117
  • 117
  • 32
  • 23
  • 21
  • 20
  • 17
  • 17
  • 16
  • 16
  • 15
  • 15
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluating recursive relational queries modelled by networks of coroutines

Glauert, J. R. W. January 1983 (has links)
No description available.
2

The design of a JADE compliant manufacturing ontology and accompanying relational database schema

Janse van Rensburg, J., Vermaak, H. January 2011 (has links)
Published Article / To enable meaningful and consistent communication between different software systems in a particular domain (such as manufacturing, law or medicine), a standardised vocabulary and communication language is required by all the systems involved. Concepts in the domain about which the systems want to communicate are formalized in an ontology by establishing the meaning of concepts and creating relationships between them. The inputs to this process in found by analysing the physical domain and its processes. The resulting ontology structure is a computer useable representation of the physical domain about which the systems want to communicate. To enable the long term persistence of the actual data contained in these concepts and the enforcement of various business rules, a sufficiently powerful database system is required. This paper presents the design of a manufacturing ontology and its accompanying relational database schema that will be used in a manufacturing test domain.
3

Is Semantic Query Optimization Worthwhile?

Genet, Bryan Howard January 2007 (has links)
The term quote semantic query optimization quote (SQO) denotes a methodology whereby queries against databases are optimized using semantic information about the database objects being queried. The result of semantically optimizing a query is another query which is syntactically different to the original, but semantically equivalent and which may be answered more efficiently than the original. SQO is distinctly different from the work performed by the conventional SQL optimizer. The SQL optimizer generates a set of logically equivalent alternative execution paths based ultimately on the rules of relational algebra. However, only a small proportion of the readily available semantic information is utilised by current SQL optimizers. Researchers in SQO agree that SQO can be very effective. However, after some twenty years of research into SQO, there is still no commercial implementation. In this thesis we argue that we need to quantify the conditions for which SQO is worthwhile. We investigate what these conditions are and apply this knowledge to relational database management systems (RDBMS) with static schemas and infrequently updated data. Any semantic query optimizer requires the ability to reason using the semantic information available, in order to draw conclusions which ultimately facilitate the recasting of the original query into a form which can be answered more efficiently. This reasoning engine is currently not part of any commercial RDBMS implementation. We show how a practical semantic query optimizer may be built utilising readily available semantic information, much of it already captured by meta-data typically stored in commercial RDBMS. We develop cost models which predict an upper bound to the amount of optimization one can expect when queries are pre-processed by a semantic optimizer. We present a series of empirical results to confirm the effectiveness or otherwise of various types of SQO and demonstrate the circumstances under which SQO can be effective.
4

Aggregation and Privacy in Multi-Relational Databases

Jafer, Yasser 11 April 2012 (has links)
Most existing data mining approaches perform data mining tasks on a single data table. However, increasingly, data repositories such as financial data and medical records, amongst others, are stored in relational databases. The inability of applying traditional data mining techniques directly on such relational database thus poses a serious challenge. To address this issue, a number of researchers convert a relational database into one or more flat files and then apply traditional data mining algorithms. The above-mentioned process of transforming a relational database into one or more flat files usually involves aggregation. Aggregation functions such as maximum, minimum, average, standard deviation, count and sum are commonly used in such a flattening process. Our research aims to address the following question: Is there a link between aggregation and possible privacy violations during relational database mining? In this research we investigate how, and if, applying aggregation functions will affect the privacy of a relational database, during supervised learning, or classification, where the target concept is known. To this end, we introduce the PBIRD (Privacy Breach Investigation in Relational Databases) methodology. The PBIRD methodology combines multi-view learning with feature selection, to discover the potentially dangerous sets of features as hidden within a database. Our approach creates a number of views, which consist of subsets of the data, with and without aggregation. Then, by identifying and investigating the set of selected features in each view, potential privacy breaches are detected. In this way, our PBIRD algorithm is able to discover those features that are correlated with the classification target that may also lead to revealing of sensitive information in the database. Our experimental results show that aggregation functions do, indeed, change the correlation between attributes and the classification target. We show that with aggregation, we obtain a set of features which can be accurately linked to the classification target and used to predict (with high accuracy) the confidential information. On the other hand, the results show that, without aggregation we obtain another different set of potentially harmful features. By identifying the complete set of potentially dangerous attributes, the PBIRD methodology provides a solution where the database designers/owners can be warned, to subsequently perform necessary adjustments to protect the privacy of the relational database. In our research, we also perform a comparative study to investigate the impact of aggregation on the classification accuracy and on the time required to build the models. Our results suggest that in the case where a database consists only of categorical data, aggregation should especially be used with caution. This is due to the fact that aggregation causes a decrease in overall accuracies of the resulting models. When the database contains mixed attributes, the results show that the accuracies without aggregation and with aggregation are comparable. However, even in such scenarios, schemas without aggregation tend to slightly outperform. With regard to the impact of aggregation on the model building time, the results show that, in general, the models constructed with aggregation require shorter building time. However, when the database is small and consists of nominal attributes with high cardinality, aggregation causes a slower model building time.
5

Aggregation and Privacy in Multi-Relational Databases

Jafer, Yasser 11 April 2012 (has links)
Most existing data mining approaches perform data mining tasks on a single data table. However, increasingly, data repositories such as financial data and medical records, amongst others, are stored in relational databases. The inability of applying traditional data mining techniques directly on such relational database thus poses a serious challenge. To address this issue, a number of researchers convert a relational database into one or more flat files and then apply traditional data mining algorithms. The above-mentioned process of transforming a relational database into one or more flat files usually involves aggregation. Aggregation functions such as maximum, minimum, average, standard deviation, count and sum are commonly used in such a flattening process. Our research aims to address the following question: Is there a link between aggregation and possible privacy violations during relational database mining? In this research we investigate how, and if, applying aggregation functions will affect the privacy of a relational database, during supervised learning, or classification, where the target concept is known. To this end, we introduce the PBIRD (Privacy Breach Investigation in Relational Databases) methodology. The PBIRD methodology combines multi-view learning with feature selection, to discover the potentially dangerous sets of features as hidden within a database. Our approach creates a number of views, which consist of subsets of the data, with and without aggregation. Then, by identifying and investigating the set of selected features in each view, potential privacy breaches are detected. In this way, our PBIRD algorithm is able to discover those features that are correlated with the classification target that may also lead to revealing of sensitive information in the database. Our experimental results show that aggregation functions do, indeed, change the correlation between attributes and the classification target. We show that with aggregation, we obtain a set of features which can be accurately linked to the classification target and used to predict (with high accuracy) the confidential information. On the other hand, the results show that, without aggregation we obtain another different set of potentially harmful features. By identifying the complete set of potentially dangerous attributes, the PBIRD methodology provides a solution where the database designers/owners can be warned, to subsequently perform necessary adjustments to protect the privacy of the relational database. In our research, we also perform a comparative study to investigate the impact of aggregation on the classification accuracy and on the time required to build the models. Our results suggest that in the case where a database consists only of categorical data, aggregation should especially be used with caution. This is due to the fact that aggregation causes a decrease in overall accuracies of the resulting models. When the database contains mixed attributes, the results show that the accuracies without aggregation and with aggregation are comparable. However, even in such scenarios, schemas without aggregation tend to slightly outperform. With regard to the impact of aggregation on the model building time, the results show that, in general, the models constructed with aggregation require shorter building time. However, when the database is small and consists of nominal attributes with high cardinality, aggregation causes a slower model building time.
6

Design and Implementation of Indexing Strategies for XML Documents

Lin, Mao-Tong 07 July 2002 (has links)
In recent years, many people use the World Wide Web and Internet to find information that they want. HTML is a document markup language for publishing hypertext on the WWW. HTML has been the target format for content developers around the world. Basically, HTML tags serve the primary purpose of describing how to display a data item. Therefore, HTML documents are difficult to find some useful information. That is because, HTML documents are mixed content with display tags. On the other hand, XML is the another data format for data exchange inter-enterprise applications on the Internet. In order to facilitate data exchange, industry groups define public Document Type Definitions (DTD) that specify the format of the XML documents to be exchanged between their applications. Moreover, WWW/EDI or Electric Commerce is very popular and a lot of business data uses XML to exchange information on the World Wide Web. Basically, XML tags describe the data itself. The contents (meaning) of the XML documents and the display format is separated. It could be easily to find meaningful information of the XML documents and analyze the information. Moreover, when a large volume of business data (XML documents) exists, one way to support the management of the XML documents is to apply the relational databases. For such an approach, we must transform the XML documents to the relational databases. In this thesis, we design and implement the indexing strategies to efficiently access XML documents. XML document is fundamentally different from relational data. XML is a hierarchical and nested document, it is very similar to the semistructured data model. The characteristic of semistructured data is that it may not have a fixed schema and it may be irregular or incomplete. Though, the semistructured data model is flexible in data modeling, it requires a large search space in query processing since there is no schema fixed in advance. Indexing is the way of how to improve query performance efficiently. However, due to the special properties of semistructued data, there are up to five types of queries: (1) complete single path, (2) specified leaf only, (3) specified intrapath, (4) specified attribute/element(value), and (5) multiple paths with the same level. In this thesis, we classify all possible queries into those five query types. Next, we create different indexes for different query types. Moreover, we design and implement the query transformation from XML query statements to SQL statements. Also, we create a user-friendly interface for users to input XML query statements. The whole system is implemented in JAVA and SQL Server 2000. From our experiences, we show that our indexing strategies can improve the XML query processing performance very well.
7

Aggregation and Privacy in Multi-Relational Databases

Jafer, Yasser 11 April 2012 (has links)
Most existing data mining approaches perform data mining tasks on a single data table. However, increasingly, data repositories such as financial data and medical records, amongst others, are stored in relational databases. The inability of applying traditional data mining techniques directly on such relational database thus poses a serious challenge. To address this issue, a number of researchers convert a relational database into one or more flat files and then apply traditional data mining algorithms. The above-mentioned process of transforming a relational database into one or more flat files usually involves aggregation. Aggregation functions such as maximum, minimum, average, standard deviation, count and sum are commonly used in such a flattening process. Our research aims to address the following question: Is there a link between aggregation and possible privacy violations during relational database mining? In this research we investigate how, and if, applying aggregation functions will affect the privacy of a relational database, during supervised learning, or classification, where the target concept is known. To this end, we introduce the PBIRD (Privacy Breach Investigation in Relational Databases) methodology. The PBIRD methodology combines multi-view learning with feature selection, to discover the potentially dangerous sets of features as hidden within a database. Our approach creates a number of views, which consist of subsets of the data, with and without aggregation. Then, by identifying and investigating the set of selected features in each view, potential privacy breaches are detected. In this way, our PBIRD algorithm is able to discover those features that are correlated with the classification target that may also lead to revealing of sensitive information in the database. Our experimental results show that aggregation functions do, indeed, change the correlation between attributes and the classification target. We show that with aggregation, we obtain a set of features which can be accurately linked to the classification target and used to predict (with high accuracy) the confidential information. On the other hand, the results show that, without aggregation we obtain another different set of potentially harmful features. By identifying the complete set of potentially dangerous attributes, the PBIRD methodology provides a solution where the database designers/owners can be warned, to subsequently perform necessary adjustments to protect the privacy of the relational database. In our research, we also perform a comparative study to investigate the impact of aggregation on the classification accuracy and on the time required to build the models. Our results suggest that in the case where a database consists only of categorical data, aggregation should especially be used with caution. This is due to the fact that aggregation causes a decrease in overall accuracies of the resulting models. When the database contains mixed attributes, the results show that the accuracies without aggregation and with aggregation are comparable. However, even in such scenarios, schemas without aggregation tend to slightly outperform. With regard to the impact of aggregation on the model building time, the results show that, in general, the models constructed with aggregation require shorter building time. However, when the database is small and consists of nominal attributes with high cardinality, aggregation causes a slower model building time.
8

Aggregation and Privacy in Multi-Relational Databases

Jafer, Yasser January 2012 (has links)
Most existing data mining approaches perform data mining tasks on a single data table. However, increasingly, data repositories such as financial data and medical records, amongst others, are stored in relational databases. The inability of applying traditional data mining techniques directly on such relational database thus poses a serious challenge. To address this issue, a number of researchers convert a relational database into one or more flat files and then apply traditional data mining algorithms. The above-mentioned process of transforming a relational database into one or more flat files usually involves aggregation. Aggregation functions such as maximum, minimum, average, standard deviation, count and sum are commonly used in such a flattening process. Our research aims to address the following question: Is there a link between aggregation and possible privacy violations during relational database mining? In this research we investigate how, and if, applying aggregation functions will affect the privacy of a relational database, during supervised learning, or classification, where the target concept is known. To this end, we introduce the PBIRD (Privacy Breach Investigation in Relational Databases) methodology. The PBIRD methodology combines multi-view learning with feature selection, to discover the potentially dangerous sets of features as hidden within a database. Our approach creates a number of views, which consist of subsets of the data, with and without aggregation. Then, by identifying and investigating the set of selected features in each view, potential privacy breaches are detected. In this way, our PBIRD algorithm is able to discover those features that are correlated with the classification target that may also lead to revealing of sensitive information in the database. Our experimental results show that aggregation functions do, indeed, change the correlation between attributes and the classification target. We show that with aggregation, we obtain a set of features which can be accurately linked to the classification target and used to predict (with high accuracy) the confidential information. On the other hand, the results show that, without aggregation we obtain another different set of potentially harmful features. By identifying the complete set of potentially dangerous attributes, the PBIRD methodology provides a solution where the database designers/owners can be warned, to subsequently perform necessary adjustments to protect the privacy of the relational database. In our research, we also perform a comparative study to investigate the impact of aggregation on the classification accuracy and on the time required to build the models. Our results suggest that in the case where a database consists only of categorical data, aggregation should especially be used with caution. This is due to the fact that aggregation causes a decrease in overall accuracies of the resulting models. When the database contains mixed attributes, the results show that the accuracies without aggregation and with aggregation are comparable. However, even in such scenarios, schemas without aggregation tend to slightly outperform. With regard to the impact of aggregation on the model building time, the results show that, in general, the models constructed with aggregation require shorter building time. However, when the database is small and consists of nominal attributes with high cardinality, aggregation causes a slower model building time.
9

A RELATIONAL APPROACH FOR MANAGING LARGE FLIGHT TEST PARAMETER LISTS

Penna, Sérgio D., Espeschit, Antônio Magno L. 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The number of aircraft parameters used in flight-testing has constantly increased over the years and there is no sign that situation will change in the near future. On the contrary, in modern, software-driven, digital avionic systems, all sorts of parameters circulate through digital buses and can be transferred to on-board data acquisition systems more easily than those converted from traditional analog transducers, facilitating the request for more and more parameters to be acquired, processed, visualized, stored and retrieved at any given time. The constant unbalance between what parameter quantity engineers believe to be “sufficient” for developing and troubleshooting systems in a new aircraft, which tends to grow with aircraft complexity, and the associated cost of instrumenting a test prototype accordingly, which tends to grow beyond budget limits, pushes for new creative ways of handling both tendencies without compromising the ease of performing an engineering analysis directly from flight test data. This paper presents an alternative for handling large collections of flight test parameters through a relational approach, particularly in two important scenarios: the very basic creation and administration of the traditional “Flight Test Parameter List” and the transmission of selected data over a telemetry link for visualization in a Ground Station.
10

Querying and extracting heterogeneous graphs from structured data and unstrutured content

Soussi, Rania 22 June 2012 (has links) (PDF)
The present work introduces a set of solutions to extract graphs from enterprise data and facilitate the process of information search on these graphs. First of all we have defined a new graph model called the SPIDER-Graph, which models complex objects and permits to define heterogeneous graphs. Furthermore, we have developed a set of algorithms to extract the content of a database from an enterprise and to represent it in this new model. This latter representation allows us to discover relations that exist in the data but are hidden due to their poor compatibility with the classical relational model. Moreover, in order to unify the representation of all the data of the enterprise, we have developed a second approach which extracts from unstructured data an enterprise's ontology containing the most important concepts and relations that can be found in a given enterprise. Having extracted the graphs from the relational databases and documents using the enterprise ontology, we propose an approach which allows the users to extract an interaction graph between a set of chosen enterprise objects. This approach is based on a set of relations patterns extracted from the graph and the enterprise ontology concepts and relations. Finally, information retrieval is facilitated using a new visual graph query language called GraphVQL, which allows users to query graphs by drawing a pattern visually for the query. This language covers different query types from the simple selection and aggregation queries to social network analysis queries.

Page generated in 0.1313 seconds