• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 968
  • 269
  • 100
  • 68
  • 68
  • 46
  • 41
  • 40
  • 25
  • 14
  • 13
  • 9
  • 8
  • 8
  • 7
  • Tagged with
  • 2020
  • 2020
  • 655
  • 501
  • 401
  • 272
  • 245
  • 237
  • 232
  • 219
  • 217
  • 189
  • 176
  • 155
  • 152
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Ohio consumers' profiles, willingness to pay, and attitudes regarding anaerobic digestion on dairy farms

Sanders, Daniel J., January 2009 (has links)
Thesis (M.S.)--Ohio State University, 2009. / Title from first page of PDF file. Includes vita. Includes bibliographical references (p. 86-89).
42

Hydrogen future

Whittaker, Alexander January 2015 (has links)
Hydrogen electrolysis has gone through a number of stages in research and applications. From what we can see from this report, there are several ways of producing hydrogen electrolysis, and several applications. The main purposes of this report however, is not to describe what hydrogen electrolysis is and its applications. Research and experiments has already proven that it is a functioning technology. The aim is to gather the necessary information, both theoretically and practically to be able, from a technical and business point of view analyze if this in fact is a realistic solution. To maintain a system of sustainable energy has always been an attractive market and there has existed a number of technologies that has had their share of the fame. However, most of these solutions have shown not to be viable, lucrative or technically scalable. Hence, the important issue to address is whether this is a solution worth investing in. The information gathered for the theory is based on technical reports, academic scripture and literature. All of which can be back tracked to its original source. The practical test is done by using a test kit made for universities and other institutes to better understand how hydrogen electrolysis works. The materials used are all scientifically acceptable according to the theories and technologies surrounding hydrogen electrolysis. Hence, the data gathered from the test kits are all accurate according to current research.
43

Exploring the Feasibility of Achieving Energy Self-sufficiency ??? A Residential Electricity Case Study in Ontario

Li, Hang January 2013 (has links)
As energy security and climate issues are emerging as global concerns, it is commonly agreed that a transition from a conventional centralized energy system, which is largely based on combustion of fossil fuel, to a more sustainable decentralized energy system that includes mainly renewable energy sources is necessary and urgent. Due to the highly variable geographical qualities of renewable energy sources, spatial energy planning is becoming essential. This study aims to address the challenges in linking spatial modelling with assessment of regional energy consumption and renewable energy supply potential. A novel approach for exploring the feasibility of achieving energy self-sufficiency through matching energy deficit areas with energy surplus areas is proposed. A method for energy deficit and surplus area matching is developed and implemented in a VBA- based tool that serves as a decision-support tool by exploring possible future deployment of renewable energy in decentralized ways. Achieving Ontario residential electricity self-sufficiency through solar PV energy on an annual basis is explored as a case study. The results show that it is technically feasible for Ontario to be residential electricity self-sufficient through the development of solar PV energy with energy deficit areas within the region getting energy supply from nearby energy surplus areas. The case study implies that regional residential electricity self- sufficiency is achievable and it is useful for planners and policy makers to bear the regional energy deficit-surplus matching idea in mind when making urban and energy plans.
44

Power technology choice : putting the money where the mouth is?

Stirling, Andrew January 1994 (has links)
No description available.
45

Renewable liquid fuels from catalytic reforming of biomass-derived oxygenated hydrocarbons /

Barrett, Christopher J., January 2008 (has links)
Thesis (Ph.D.)-- University of Wisconsin--Madison, 2008. / Includes bibliographical references (p. 138-144). Also available on the Internet.
46

An empirical assessment of entry into the green power market

Mester, Gretchen S. January 1900 (has links)
Thesis (Ph.D.)--University of Oregon, 2004. / Adviser: William T. Harbaugh. Includes bibliographical references.
47

Renewable liquid fuels from catalytic reforming of biomass-derived oxygenated hydrocarbons

Barrett, Christopher J., January 2008 (has links)
Thesis (Ph.D.)-- University of Wisconsin--Madison, 2008. / Includes bibliographical references (p. 138-144).
48

Energy harvesting pavements using air convection

Chiarelli, Andrea January 2016 (has links)
Pavements are one of the most important components of modern civil infrastructure systems. Being constantly exposed to weather conditions, pavements may be subject to heating and cooling cycles, which vary as a function of the location and are proven to reduce the lifespan and reliability of our transport infrastructure. The most extreme effects of weather are generally seen in the form of overheating of the paving materials or freezing of the pavement surface. In this Thesis, natural convection of air is considered as a means to harvest heat from pavements during hot periods and to provide heat to them when the weather is cold. In the research presented, a buoyancy-driven air flow is allowed through metal pipes installed under an asphalt wearing course. The analysis of the phenomena at work is performed from an experimental, computational, and theoretical point of view. The main contribution to research provided by this Thesis it that the experiments performed show that a convection-powered air flow can be effectively used for the reduction or increase of pavement temperatures up to about �5°C. Moreover, the effects of variations in the design of energy harvesting pavements are quantified and discussed, proving that the installation of all pipes in a single row under the wearing course of a pavement is the overall best solution for the implementation of this technology. Finally, CFD simulations suggest that the air pores that are naturally present in asphalt mixtures are not suitable to allow the air flow required for convection-powered energy harvesting, due to both fluid-dynamic and practical reasons.
49

Solar energy potential in the Kingdom of Saudi Arabia : a comparative analysis, assessment and exploitation for power generation

Aldabesh, Abdulmajeed January 2016 (has links)
This research investigates the potential for employing solar energy as a sustainable power generation source in the Kingdom of Saudi Arabia (KSA). The work maps the availability of solar energy throughout the country, and investigates the feasibility of implementing the technology at two case study locations. These are the existing power generation grid sites of Wadi Aldawasir (located 20° 23′ 22.00″ N 45° 12′ 32.00″ E), and Shuaibah (located 20° 37′ 22.84″ N 39° 33′ 44.02″ E). The first case study site, Wadi Aldawasir, covers an area of 48,900 m2, where parabolic trough solar thermal technology is proposed for power generation. The second case study site, Shuaibah power plant is one of the largest desalination and fossil fuel plants in the world with a 1,030,000 m3/ day capacity. Both case studies were assessed in terms of site specifications with selection based on Direct Normal Irradiation (DNI). A feasibility study examining Concentrated Solar Power (CSP) potential was conducted for both locations, with analysis of weather data, particularly monthly and annual, global horizontal and beam normal irradiation data. From these data, a reasonable estimate of CSP potential, and viability of the technology was determined. Simulation was then performed using Solar Advisor Model (SAM) and Renewable Energy Technology Screen (RETScreen) software, taking into account the location weather data, (DNI, dry-bulb and dew-point temperatures, relative humidity, barometric pressure, and wind speed), technical specification, (solar field, Solar Multiple (SM) Solar collector Assemblies (SCAs), power cycle and thermal storage) and economic parameters (energy unit cost, maintenance, etc.). Simulation evaluated annual energy performance (solar radiation resource of the solar field, electrical energy delivered by solar thermal plant, system losses, required solar field area), levelised cost of unit of power generated, CO2 emissions savings, and other financial feasibility indicators. The work shows that the energy yield of the new solar power plants using proposed CSP technology in both case studies is feasible.
50

Compressed air energy storage for large-scale renewable energy systems for a case study of Egyptian grid

Ramadan, Omar January 2016 (has links)
All across the world, attention is turning to renewable energies to serve at least as a partial substitute to fossil fuels in the global energy mix, braking the latter’s depletion and providing a greener solution for a more sustainable future. However, the intermittent nature of most renewable energy sources, wind and solar in particular, raises major concerns over the integration of these technologies, on a large scale, to grid systems. This thesis focuses on large-scale renewable energy storage systems, primarily compressed air energy storage (CAES) systems, which are particularly well suited for renewable energy applications. CAES can play a major role in shaping the future of renewable energy systems for not only can it bring load levelling to the system, but it can also add substantial value by providing ancillary services to the grid. The main focus of this research is adiabatic CAES which endeavours to minimize the use of natural gas by using recuperators and thermal energy storage systems, where the heat from the air during the compression stages is absorbed by a heat transfer fluid, stored, and then supplied back during the expansion process. This project aimed to explore the potential of CAES systems as an energy storage technology for large-scale grid integrated renewable energy system. A computer model was developed to size the different components in the CAES system and also to predict the operational performance of the CAES system for different conditions using MATLAB programming. The thermal energy storage of an adiabatic CAES system was optimized using CFD analysis and experimental testing of the thermal energy storage system was carried out to validate the models. Also, an economic study was performed to assess the feasibility of the CAES system based on a case study of the Egyptian grid. The dynamic simulation of a novel configuration of an adiabatic CAES system showed that the system can achieve improved performance compared to existing CAES plants, while the economic study showed that CAES can improve the economics of a wind farm, at least by the standards of our chosen case study location.

Page generated in 0.2601 seconds