Spelling suggestions: "subject:"andstandard finite difference"" "subject:"15nmstandard finite difference""
1 |
Non-standard finite difference methods in dynamical systemsKama, Phumezile 13 July 2009 (has links)
This thesis analyses numerical methods used in finding solutions of diferential equations. Numerical methods are viewed as discrete dynamical systems that give useful information on continuous dynamical systems defined by systems of (ordinary) diferential equations. We analyse non-standard finite difference schemes that have no spurious fixed-points compared to the dynamical system under consideration, the linear stability/instability property of the fixed-points being the same for both the discrete and continuous systems. We obtain a sharper condition for the elementary stability of the schemes. For more complex dynamical systems which are dissipative, we design schemes that replicate this property. Furthermore, we investigate the impact of the above analysis on the numerical solution of partial differential equations. We specifically focus on reaction-diffusion equations that arise in many fields of engineering and applied sciences. Often their solutions enjoy the follow- ing essential properties: Stability/instability of the fixed points for the space independent equation, the conservation of energy for the stationary equation, and boundedness and positivity. We design new non-standard finite diference schemes which replicate these properties. Our construction make use of three strategies: the renormalization of the denominator of the discrete derivative, non-local approximation of the nonlinear terms and simple functional relation between step sizes. Numerical results that support the theory are provided. Copyright / Thesis (PhD)--University of Pretoria, 2009. / Mathematics and Applied Mathematics / unrestricted
|
2 |
Computation of Electromagnetic Fields in Assemblages of Biological Cells using a Modified Finite-Difference Time-Domain SchemeAbd-Alhameed, Raed, Excell, Peter S., See, Chan H. January 2007 (has links)
Yes / When modeling objects that are small compared with the wavelength, e.g., biological cells at radio frequencies, the standard finite-difference time-domain (FDTD) method requires extremely small time-step sizes, which may lead to excessive computation times. The problem can be overcome by implementing a quasi-static approximate version of FDTD based on transferring the working frequency to a higher frequency and scaling back to the frequency of interest after the field has been computed. An approach to modeling and analysis of biological cells, incorporating a generic lumped-element membrane model, is presented here. Since the external medium of the biological cell is lossy material, a modified Berenger absorbing boundary condition is used to truncate the computation grid. Linear assemblages of cells are investigated and then Floquet periodic boundary conditions are imposed to imitate the effect of periodic replication of the assemblages. Thus, the analysis of a large structure of cells is made more computationally efficient than the modeling of the entire structure. The total fields of the simulated structures are shown to give reasonable and stable results at 900,1800, and 2450 MHz. This method will facilitate deeper investigation of the phenomena in the interaction between electromagnetic fields and biological systems.
|
3 |
Analysis and implementation of a positivity preserving numerical method for an HIV modelWyngaardt, Jo-Anne January 2007 (has links)
>Magister Scientiae - MSc / This thesis deals with analysis and implementation of a positivity preserving numerical
method for a vaccination model for the transmission dynamics of two HIVsubtypes
in a given community. The continuous model is analyzed for stability and
equilibria. The qualitative information thus obtained is used while designing numerical
method(s). Three numerical methods, namely, Implicit Finite Difference Method
(IFDM), Non-standard Finite Difference Method (NSFDM) and the Runge-Kutta
method of order four (RK4), are designed and implemented. Extensive numerical
simulation are carried out to justify theoretical outcomes.
|
4 |
A Dynamical Study of the Evolution of Pressure Waves Propagating through a Semi-Infinite Region of Homogeneous Gas Combustion Subject to a Time-Harmonic Signal at the BoundaryEslick, John 17 December 2011 (has links)
In this dissertation, the evolution of a pressure wave driven by a harmonic signal on the boundary during gas combustion is studied. The problem is modeled by a nonlinear, hyperbolic partial differential equation. Steady-state behavior is investigated using the perturbation method to ensure that enough time has passed for any transient effects to have dissipated. The zeroth, first and second-order perturbation solutions are obtained and their moduli are plotted against frequency. It is seen that the first and second-order corrections have unique maxima that shift to the right as the frequency decreases and to the left as the frequency increases. Dispersion relations are determined and their limiting behavior investigated in the low and high frequency regimes. It is seen that for low frequencies, the medium assumes a diffusive-like nature. However, for high frequencies the medium behaves similarly to one exhibiting relaxation. The phase speed is determined and its limiting behavior examined. For low frequencies, the phase speed is approximately equal to sqrt[ω/(n+1)] and for high frequencies, it behaves as 1/(n+1), where n is the mode number. Additionally, a maximum allowable value of the perturbation parameter, ε = 0.8, is determined that ensures boundedness of the solution. The location of the peak of the first-order correction, xmax, as a function of frequency is determined and is seen to approach the limiting value of 0.828/sqrt(ω) as the frequency tends to zero and the constant value of 2 ln 2 as the frequency tends to infinity. Analytic expressions are obtained for the approximate general perturbation solution in the low and high-frequency regimes and are plotted together with the perturbation solution in the corresponding frequency regimes, where the agreement is seen to be excellent. Finally, the solution obtained from the perturbation method is compared with the long-time solution obtained by the finite-difference scheme; again, ensuring that the transient effects have dissipated. Since the finite-difference scheme requires a right boundary, its location is chosen so that the wave dissipates in amplitude enough so that any reflections from the boundary will be negligible. The perturbation solution and the finite-difference solution are found to be in excellent agreement. Thus, the validity of the perturbation method is established.
|
5 |
Mathematical modelling of virus RSV: qualitative properties, numerical solutions and validation for the case of the region of ValenciaArenas Tawil, Abraham José 24 May 2010 (has links)
El objetivo de esta memoria se centra en primer lugar en la modelización del comportamiento de enfermedades estacionales mediante sistemas de ecuaciones diferenciales y en el estudio de las propiedades dinámicas tales como positividad, periocidad, estabilidad de las soluciones analíticas y la construcción de esquemas numéricos para las aproximaciones de las soluciones numéricas de sistemas de ecuaciones diferenciales de primer orden no lineales, los cuales modelan el comportamiento de enfermedades infecciosas estacionales tales como la transmisión del virus Respiratory Syncytial Virus (RSV).
Se generalizan dos modelos matemáticos de enfermedades estacionales y se demuestran que tiene soluciones periódicas usando un Teorema de Coincidencia de Jean Mawhin. Para corroborar los resultados analíticos, se desarrollan esquemas numéricos usando las técnicas de diferencias finitas no estándar desarrolladas por Ronald Michens y el método de la transformada diferencial, los cuales permiten reproducir el comportamiento dinámico de las soluciones analíticas, tales como positividad y periocidad.
Finalmente, las simulaciones numéricas se realizan usando los esquemas implementados y parámetros deducidos de datos clínicos
De La Región de Valencia de personas infectadas con el virus RSV. Se confrontan con las que arrojan los métodos de Euler, Runge Kutta y la rutina de ODE45 de Matlab, verificándose mejores aproximaciones para tamaños de paso mayor a los que usan normalmente estos esquemas tradicionales. / Arenas Tawil, AJ. (2009). Mathematical modelling of virus RSV: qualitative properties, numerical solutions and validation for the case of the region of Valencia [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8316
|
Page generated in 0.1013 seconds