• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Bayesian Analyses of Functional Regression, Correlated Functional Data and Non-homogeneous Computer Models

Montagna, Silvia January 2013 (has links)
<p>Current frontiers in complex stochastic modeling of high-dimensional processes include major emphases on so-called functional data: problems in which the data are snapshots of curves and surfaces representing fundamentally important scientific quantities. This thesis explores new Bayesian methodologies for functional data analysis. </p><p>The first part of the thesis places emphasis on the role of factor models in functional data analysis. Data reduction becomes mandatory when dealing with such high-dimensional data, more so when data are available on a large number of individuals. In Chapter 2 we present a novel Bayesian framework which employs a latent factor construction to represent each variable by a low dimensional summary. Further, we explore the important issue of modeling and analyzing the relationship of functional data with other covariate and outcome variables simultaneously measured on the same subjects.</p><p>The second part of the thesis is concerned with the analysis of circadian data. The focus is on the identification of circadian genes that is, genes whose expression levels appear to be rhythmic through time with a period of approximately 24 hours. While addressing this goal, most of the current literature does not account for the potential dependence across genes. In Chapter 4, we propose a Bayesian approach which employs latent factors to accommodate dependence and verify patterns and relationships between genes, while representing the true gene expression trajectories in the Fourier domain allows for inference on period, phase, and amplitude of the signal.</p><p>The third part of the thesis is concerned with the statistical analysis of computer models (simulators). The heavy computational demand of these input-output maps calls for statistical techniques that quickly estimate the surface output at untried inputs given a few preliminary runs of the simulator at a set design points. In this regard, we propose a Bayesian methodology based on a non-stationary Gaussian process. Relying on a model-based assessment of uncertainty, we envision a sequential design technique which helps choosing input points where the simulator should be run to minimize the uncertainty in posterior surface estimation in an optimal way. The proposed non-stationary approach adapts well to output surfaces of unconstrained shape.</p> / Dissertation
2

Multi-layer designs and composite gaussian process models with engineering applications

Ba, Shan 21 May 2012 (has links)
This thesis consists of three chapters, covering topics in both the design and modeling aspects of computer experiments as well as their engineering applications. The first chapter systematically develops a new class of space-filling designs for computer experiments by splitting two-level factorial designs into multiple layers. The new design is easy to generate, and our numerical study shows that it can have better space-filling properties than the optimal Latin hypercube design. The second chapter proposes a novel modeling approach for approximating computationally expensive functions that are not second-order stationary. The new model is a composite of two Gaussian processes, where the first one captures the smooth global trend and the second one models local details. The new predictor also incorporates a flexible variance model, which makes it more capable of approximating surfaces with varying volatility. The third chapter is devoted to a two-stage sequential strategy which integrates analytical models with finite element simulations for a micromachining process.
3

Reliability Analysis of Linear Dynamic Systems by Importance Sampling-Separable Monte Carlo Technique

Thapa, Badal January 2020 (has links)
No description available.

Page generated in 0.1047 seconds