• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular and phenotypic characterisation of grapevines expressing non-vinifera PGIP encoding genes

Moyo, Mukani 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: Plants are constantly exposed to biotic and abiotic stress inducing factors that threaten their existence. Biotic factors such as pathogens are the cause of huge yield losses to crop plants worldwide with fungal pathogens debatably constituting the worst damage. Fungal pathogens such as Botrytis cinerea, which has a wide host range, release cell wall degrading enzymes called endopolygalacturonases (ePGs) during plant infection. These ePGs break down the pectin component of the cell wall, thus providing an entry route, as well as nutrients for the fungus. Plants have evolved mechanisms to counteract and suppress the action of the ePGs. This is achieved through the action of cell wall associated proteins called polygalacturonaseinhibiting proteins, PGIPs. PGIPs directly inhibit ePGs and their inhibitory action also prolongs the existence of longer chain oligogalacturonide residues which are believed to elicit a cascade of defence responses. In grapevine, a PGIP encoding gene, VvPGIP1, was previously isolated and characterised. VvPGIP1, as well as nine non-vinifera grapevine PGIPs have been expressed in tobacco and shown to be potent antifungal proteins that caused the transgenic tobacco to have strong resistance phenotypes against Botrytis in whole plant infection assays. Following on the tobacco study, two of the non-vinifera PGIPs were expressed in cultivars of the susceptible Vitis vinifera. Characterisation of the putative transgenic population showed that transgene integration was successful, the transgenes were being expressed and there were at least 29 transgenic lines with independent integration events. The transgenic lines were confirmed to have active PGIPs (transgene-derived) in their leaves. Crude protein extracts from 22 lines exhibited 100% inhibition against crude B. cinerea PGs (BcPGs). The plant lines with positive transgene integration, expression, independent integration events and exhibiting 100% transgene-derived PGIP activity were further selected for whole plant and detached leaf antifungal assays where they were challenged with B. cinerea. The whole plant infection assay showed that expression of the non-vinifera PGIPs in V. vinifera promotes susceptibility to B. cinerea, not resistance. This surprising result could perhaps be explained by a quicker and stronger recognition between the pathogen and the host and the stronger activation of defence responses in the host. A more active hypersensitive response in the host would benefit Botrytis being a necrotroph. The type of lesions and the onset and speed of lesion development observed on the transgenics lines versus the wild type support this possibility. Knowledge gaps with regards to the efficiency of the ePG inhibition by the nonvinifera PGIPs during infection of grapevine tissue; the potential changes that might be caused by expressing PGIPs in a grapevine host with a native PGIP with high homology to the transgenes (including potential gene silencing) and the potential impact on defence signalling and defence responses all provides further avenues of study to elucidate this very interesting phenotype further. Overall, this study provides a comprehensively characterised population of transgenic plants that provides useful resources for in vivo analysis of PGIP function in defence, where the host plant harbours a native copy of the PGIP encoding gene. / AFRIKAANSE OPSOMMING: Plante word voortdurend blootgestel aan biotiese en abiotiese faktore, wat stres veroorsaak en hul bestaan bedreig. Biotiese faktore, soos patogene, veroorsaak groot verliese in wêreldwye gewasopbrengste, met swampatogene wat moontlik die grootste skade veroorsaak. Swampatogene, soos Botrytis cinerea, wat ‘n wye reeks gasheerplante kan infekteer, stel selwand-afbrekende ensieme tydens plantinfeksie vry, wat as endo-poligalakturonases (ePG’s). bekend staan. Hierdie ePG’s breek die pektienkomponent van die selwand af, wat gevolglik as ‘n ingangspunt dien,asook voedingstowwe vir die swam verskaf. Plante het meganismes ontwikkel om die aktiwiteit van hierdie ePG’s te bekamp en te onderdruk. Die aktiwiteit van die selwand-geassosieërde proteïene, genaamd poligalakturonase-inhiberende proteïene (PGIP’s), speel hier ‘n rol. PGIP’s inhibeer ePG’s direk en hul inhiberende aktiwiteit verleng ook die bestaan van langketting oligogalakturoniedresidu’s, wat blykbaar ‘n kaskade van weerstandsreaksies kan inisieer. ‘n PGIP-koderende geen, VvPGIP1, is voorheen uit wingerd geïsoleer en gekarakteriseer. VvPGIP1, asook nege nie-vinifera wingerd-PGIP’s is voorheen in tabak uitgedruk en bevestig as proteïene met sterk anti-swamaktiwiteit, soos bevestig deur die bevinding dat die transgeniese tabak ‘n weerstandsfenotipe teen Botrytis in heelplant-infeksietoetse het. Ná die tabakstudie is twee van die nie-vinifera PGIP’s uitgedruk in vatbare V. vinifera-kultivars. Karakterisering van die vermeende transgeniese bevolking het getoon dat die transgeen-integrasie suksesvol was, dat die transgeen uitgedruk word en dat daar ten minste 29 transgeniese lyne met onafhanklike integrasie gebeurtenisse geskep is. Daar is verder bevestig dat die transgeniese lyne aktiewe PGIP’s (transgeen-afkomstig) in hul blare het. Ongesuiwerde proteïenekstrakte van 22 lyne het 100% inhibisie teen ‘n mengsel van ongesuiwerde B. cinerea PGs (BcPGs) getoon. Die plantlyne met positiewe transgeenintegrasie en -uitdrukking, asook onafhanklike integrasiegebeure en wat 100% transgeen-afkomstige PGIP-aktiwiteit getoon het, is verder aan heel-plant en verwyderde blaarswaminfeksies met B cinerea onderwerp. Die heelplantinfeksietoetse het getoon dat uitdrukking van nie-vinifera PGIP’s in V. vinifera ‘n toename, in plaas van ‘n afname, in vatbaarheid teen B. cinerea veroorsaak. Hierdie verbasende resultaat kan moontlik toegeskryf word aan ‘n vinniger en sterker herkenningsreaksie tussen patogeen en gasheer en die moontlike sterker stimulering van weerstandsreaksies in die gasheer. ‘n Meer aktiewe hipersensitiewe reaksie in die gasheer sal tot die voordeel van Botrytis, wat ‘n nektrotroof is, wees. Die tipe letsel, asook die aanvang en spoed van letselontwikkeling wat waargeneem is in transgeniese lyne teenoor die wilde-tipe ondersteun hierdie moontlikheid. Gapings in kennis ten opsigte van die doeltreffendheid van die ePG-inhibisie deur die nievinifera PGIP’s tydens infeksie van wingerdweefsel, die moontlike veranderinge (insluitend ‘n moontlike geenuitdowingseffek) wat veroorsaak kan word deur die uitdrukking van PGIP-gene in ‘n kultivar met ‘n inheemse en baie homoloë PGIP-geen, kon ‘n invloed op weerstandseine en weerstandsreaksies gehad het. Hierdie aspekte lewer verdere studiemoontlikhede om hierdie interessante fenotipe verder te verklaar.Algeheel lewer hierdie studie ‘n breedvoeriggekarakteriseerde bevolking trangeniese plante, wat dien as nuttige hulpbronne vir in vivoanalise van PGIP se funksie in siekteweerstandbiedendheid, veral waar die gasheerplant ‘n inheemse kopie van die PGIP-koderende geen huisves.

Page generated in 0.0785 seconds