Spelling suggestions: "subject:"bornaviral DNA delivery"" "subject:"borneviral DNA delivery""
1 |
Cationic Glycopolymers for DNA Delivery: Cellular Internalization Mechanisms and Biological CharacterizationMcLendon, Patrick Michael 30 November 2009 (has links)
Understanding the biological mechanisms of polymeric DNA delivery is essential to develop vehicles that perform optimally. In this work, the cellular internalization mechanisms of poly(glycoamidoamine) (PGAA) DNA delivery polymers were investigated. Polymer:DNA complexes interact with cell-surface glycosaminoglycans (GAGs) in a manner independent of electrostatic interactions. Desulfation and GAG removal leads to decreased uptake. Individual polyplexes appear to have differing affinities for specific GAGs, as polyplex dissociation occurs in a charge-independent manner, and may influence binding. Internalization occurs through close interactions with GAGs, as GAGs accumulate on polyplex surfaces, resulting in negatively-charged polyplexes and decompaction of intact polyplexes is observed upon interaction with GAG.
PGAA polyplexes enter cells via a complex, multifaceted internalization route. Pharmacological inhibition of endocytosis and visualization by confocal microscopy reveal that internalization occurs primarily through an actin and dynamin-dependent mechanism. Caveolae/raft-mediated endocytosis appears to be the predominant internalization mechanism, with clathrin-mediated endocytosis also significantly involved. Internalization occurs to a smaller degree via macropinocytosis and direct membrane penetration. Caveolae-mediated, but not clathrin-mediated, internalization leads to transgene expression, suggesting a targeting opportunity based on uptake mechanisms.
PEGylation of PGAA polyplexes was achieved to minimize polyplex aggregation in serum. Polyplex size increased in serum, but PEGylation prevented further polyplex growth over time compared to non-PEGylated polymers. Specific targeting of hepatocytes through end-modification of PEG with galactose was unsuccessful, likely due to inaccessibility of targeting groups. Further hepatocyte targeting efforts focused on malonate-based polymers with clickable linkages for facile linkage of targeting groups. Despite favorable surface presentation of galactose, receptor-specific internalization of polyplexes was unsuccessful, as competitive inhibition in HepG2 cells resulted in significant polyplex internalization derived from nonspecific membrane interactions.
Chemical modification of vehicles allows systematic study of structure-function properties leading to efficient intracellular delivery. Increasing G4 molecular weight generally increases toxicity and decreases transgene expression in HeLa cells. Incorporating galactose into a lanthanide-chelating polymer facilitated efficient cellular internalization that was visualized by two-photon microscopy. Increased gene expression was observed that correlated to increasing galactose, suggesting that polymer degradation increases gene expression. Also studied were branched peptides targeted to HIV-1 TAR, which displayed high biocompatibility and favorable internalization profiles in mammalian cells. / Ph. D.
|
2 |
Mechanisms of Cytotoxicity and Intracellular Trafficking for Gene Delivery PolymersGrandinetti, Giovanna 18 August 2011 (has links)
Herein, different polymer libraries were examined to determine the effect polymer structure has on intracellular events. The effect of different polyamine lengths in copolymers on cellular uptake, the effect of modifying end groups of trehalose-containing polymers on transfection efficiency, and the effect of different linker lengths between galactose and a hepatocyte-targeted polymer on transfection efficiency were studied. Furthermore, it was demonstrated that polymers with terbium chelated in their repeat units could potentially be used for Förster resonance energy transfer (FRET) studies to monitor pDNA release from the polymer. Much of the work in this dissertation focuses on elucidating the intracellular mechanisms of linear poly(ethylenimine) (PEI) and how it compares to poly(L-tartaramidopentaethylenetetramine) (T4) and poly(galactaramidopentaethylenetetramine) (G4), two poly(glycoamidoamine)s synthesized by our group. The long-term goal of this project is to develop structure-function relationships between polymers and pDNA delivery efficacy that will result in the rational design of safe, efficient vehicles for therapeutic nucleic acid delivery.
Many polymers used as DNA delivery vehicles display high cytotoxicity. Often, the polymers with the highest transfection efficiency are the most toxic, as demonstrated herein by PEI and T4 with varying polymer lengths. Therefore, it was of interest to study how polymer structure influences mechanisms of cytotoxicity. To this end, studies on several mechanisms of cytotoxicity, including nuclear envelope permeabilization, were conducted. Longer polymers induced more cytotoxic responses than shorter ones, and it appears that hydroxyl groups in the repeat unit of polymers play a role in polyplex formation. This research has also led us to a potential link between transfection efficiency and cytotoxicity; the polymers with the highest transfection efficiency were also the most toxic, and were also able to induce the most nuclear envelope permeability. It is possible that these polymers' ability to permeabilize the nuclear envelope is what causes their high transfection efficiency and high toxicity. In addition, flow cytometry and confocal microscopy studies revealed that polymer structure plays a role in nuclear trafficking; poly(glycoamidoamine)s G4 and T4 more dependent on intracellular machinery than PEI. This research demonstrates the impact that changes in polymer structure have on intracellular mechanisms. / Ph. D.
|
3 |
Poly(glycoamidoamine)s: Understanding their Structure and Structure-Bioactivity RelationshipsTaori, Vijay P. 01 September 2010 (has links)
In order to achieve efficient therapeutic effect, it is important to understand the structure of biomaterials that are used in the therapeutic delivery system. This dissertation is dedicated towards understanding the hydrolysis pattern of plasmid DNA (pDNA) delivery vehicles comprised of poly(glycoamidoamine)s (PGAAs) under physiological conditions and effects of subtle changes in the chemical structure of the PGAAs on its biological performance.
The unusual hydrolysis of the tartarate and galactarate based PGAAs was investigated by studying the hydrolysis of small model molecules which mimic the repeat unit of the respective polymers. In the case of galactarate and tartarate based molecules with terminal amines showed faster hydrolysis of the amide bonds. In addition for the tartarate based compounds, it was also found that it is necessary to have terminal amine functionality for the intramolecular hydrolysis to occur. The model compounds consists of two amide bonds and were designed symmetric, however amide bond on only one side of the tartarate moiety show underwent hydrolysis. Further studies show that one side of the amine assists the hydrolysis of the amide bond on the other side of the tartarate moiety.
The degradation of poly(L-tartaramidopentaethylenetetramine) (<strong>T4</strong>) was also used to study the sustained release of pDNA from the layer-by-layer constructs of <strong>T4</strong>/pDNA. The thickness of the constructs was characterized by ellipsometry while the UV-visible spectroscopy was used to characterize the loading capacity of the constructs for pDNA. The indirect sustained release of pDNA under the physiological conditions with respect to time was characterized by the cellular uptake studies in HeLa cells. The increase in the uptake of the Cy5 labeled pDNA was seen at extended period of eleven days. The integrity of the sustained released pDNA for the transgene expression was characterized with an assay to see the expression of the green fluorescent protein (GFP) from the <strong>T4</strong>/GFP-pDNA layer-by-layer constructs.
PGAAs show a very efficient delivery of the pDNA in a non-toxic manner. The chemical structure of the polymer can dictate the binding with pDNA and also the release of the pDNA form the polymer-pDNA complexes. In order to better understand the fundamentals of the nucleic acid delivery and to better design the nucleic acid delivery vehicles, subtle changes in the chemical structure of the PGAAs were designed and studied for the biological activity. The effect of charge type was investigated by designing and synthesizing guanidine based polymer series analogues to galactarate and tartarate based PGAAs (<strong>G1</strong> and <strong>T1</strong>) which incorporate secondary amines as the charge type on the polymer backbone. The guanidine based polymer series, poly(glycoamidoguanidine)s (PGAGs), show very non toxic behavior in HeLa cells at all the different polymer to pDNA ratio (<i>N/P</i> ratio) studied. Interestingly PGAGs are the only non-toxic guanidine containing polymers which are reported in the literature to the date. The cellular uptake of pDNA assisted from the PGAGs is a little higher than PGAAs compared although both the series of polymers show similar transgene expression. The transgene expression in case of PGAGs also imply the release of the polymer-pDNA complexes from the endosome. In another study of structure-bioactivity relationship based on the degree of polymerization (DP) of poly(galactaramidopentaethylenetetramine) (<strong>G4</strong>), it was found that the increase in the DP of <strong>G4</strong> increases the toxicity of the polymers in the HeLa cells. / Ph. D.
|
Page generated in 0.053 seconds