• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 18
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Termovizní zobrazovače v technické diagnostice / Thermal imagers in technical diagnosis

Haltuf, Martin January 2010 (has links)
In this thesis is dealed the technical term diagnostic with Fluke Ti55 thermo imager. In the introduction of description is analyzed noncontact temperature measurement including principle, uncertainties measurement and measurement system. In other parts of the work is focused on thermal imaging, termogram, description Fluke Ti55 termo imager and measurement of mechanical stress. The concluding part of the description and processing of measurements, including their evaluation.
2

Termovizní zobrazovače v technické diagnostice / Thermal imagers in technical diagnosis

Haltuf, Martin January 2010 (has links)
In this thesis is dealed the technical term diagnostic with Fluke Ti55 thermo imager. In the introduction of description is analyzed noncontact temperature measurement including principle, uncertainties measurement and measurement system. In other parts of the work is focused on thermal imaging, termogram, description Fluke Ti55 termo imager and measurement of mechanical stress. The concluding part of the description and processing of measurements, including their evaluation.
3

The Effects of a 6-Week Neuromuscular Training Program on Knee Joint Motor Control During Sidecutting in High School Female Athletes

Waxman, Justin Phillip 25 July 2012 (has links)
No description available.
4

Effects of a Custom Bite-Aligning Mouthguard on Performance in College Football Players

Drum, Scott N., Swisher, Anna M., Buchanan, Christina A., Donath, Lars 01 May 2016 (has links)
Effects of a custom bite-aligning mouthguard on performance in college football players. J Strength Cond Res 30(5): 1409-1415, 2016 - Besides injury prevention, mouthguards can also be employed to improve physical performance. The effects of personalization of mouthguards have rarely been investigated. This 3-armed, randomized, controlled crossover trial investigated the difference of wearing (a) personalized or custom-made (CM, e.g., bite-aligned), (b) standard (BB, boil and bite), and (c) no (CON) mouthguards on general fitness parameters in experienced collegiate football players. A group of 10 upperclassmen (age, 19-22 years; mean ± SD: age 20.7 ± 0.8 years; body mass 83 ± 7.4 kg; height 179.1 ± 5.2 cm; body mass index 25.9 ± 2.2 kg·cm -2), National Collegiate Athletic Association Division II football players with at least 2 years of playing experience, were randomly assigned to the 3 mouthguard conditions: a randomized, within-subjects repeated-measures design was applied. All participants were randomly tested on strength and endurance performance Vo 2 max testing, with Bruce treadmill protocol including (a) time to fatigue, (b) blood lactate concentration in millimoles per liter at stage 2 and (c) at peak fatigue, (d) flexibility, (e) reaction time, (f) squat vertical jump, (g) countermovement vertical jump, and (h) 1 repetition maximum bench press. Repeated-measures analysis of variance showed no significant differences between the 3 conditions for each outcome variable (0.23 < p < 0.94; 0.007 < < 0.15). These data indicate that CM mouthguards did not superiorly affect general fitness parameters compared with BB and CON. In turn, protective BB or CM mouthpieces did not appear to impair general fitness performance vs. CON. The recommendation of a custom bite-aligning mouthguards for performance enhancement in young Division II football players is questioned. Further studies with larger sample sizes, gender comparison, and (sport) discipline-specific performance testing are needed.
5

Comparison of epicardial mapping and noncontact endocardial mapping in dog experiments and computer simulations

Sabouri, Sepideh 05 1900 (has links)
La fibrillation auriculaire, l'arythmie la plus fréquente en clinique, affecte 2.3 millions de patients en Amérique du Nord. Pour en étudier les mécanismes et les thérapies potentielles, des modèles animaux de fibrillation auriculaire ont été développés. La cartographie électrique épicardique à haute densité est une technique expérimentale bien établie pour suivre in vivo l'activité des oreillettes en réponse à une stimulation électrique, à du remodelage, à des arythmies ou à une modulation du système nerveux autonome. Dans les régions qui ne sont pas accessibles par cartographie épicardique, la cartographie endocardique sans contact réalisée à l'aide d'un cathéter en forme de ballon pourrait apporter une description plus complète de l'activité auriculaire. Dans cette étude, une expérience chez le chien a été conçue et analysée. Une reconstruction électro-anatomique, une cartographie épicardique (103 électrodes), une cartographie endocardique sans contact (2048 électrodes virtuelles calculées à partir un cathéter en forme de ballon avec 64 canaux) et des enregistrements endocardiques avec contact direct ont été réalisés simultanément. Les systèmes d'enregistrement ont été également simulés dans un modèle mathématique d'une oreillette droite de chien. Dans les simulations et les expériences (après la suppression du nœud atrio-ventriculaire), des cartes d'activation ont été calculées pendant le rythme sinusal. La repolarisation a été évaluée en mesurant l'aire sous l'onde T auriculaire (ATa) qui est un marqueur de gradient de repolarisation. Les résultats montrent un coefficient de corrélation épicardique-endocardique de 0.8 (expérience) and 0.96 (simulation) entre les cartes d'activation, et un coefficient de corrélation de 0.57 (expérience) and 0.92 (simulation) entre les valeurs de ATa. La cartographie endocardique sans contact apparait comme un instrument expérimental utile pour extraire de l'information en dehors des régions couvertes par les plaques d'enregistrement épicardique. / Atrial fibrillation is the most common clinical arrhythmia currently affecting 2.3 million patients in North America. To study its mechanisms and potential therapies, animal models of atrial fibrillation have been developed. Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to pacing, remodeling, arrhythmias and modulation of the autonomic nervous system. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. In this study, a dog experiment was designed and analyzed in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed. The recording system was also simulated in a computer model of the canine right atrium. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial endocardial correlation coefficient of 0.8 (experiment) and 0.96 (simulation) between activation times, and a correlation coefficient of 0.57 (experiment) and 0.92 (simulation) between ATa values. Noncontact mapping appears to be a valuable experimental device to retrieve information outside the regions covered by epicardial recording plaques.
6

Comparison of epicardial mapping and noncontact endocardial mapping in dog experiments and computer simulations

Sabouri, Sepideh 05 1900 (has links)
La fibrillation auriculaire, l'arythmie la plus fréquente en clinique, affecte 2.3 millions de patients en Amérique du Nord. Pour en étudier les mécanismes et les thérapies potentielles, des modèles animaux de fibrillation auriculaire ont été développés. La cartographie électrique épicardique à haute densité est une technique expérimentale bien établie pour suivre in vivo l'activité des oreillettes en réponse à une stimulation électrique, à du remodelage, à des arythmies ou à une modulation du système nerveux autonome. Dans les régions qui ne sont pas accessibles par cartographie épicardique, la cartographie endocardique sans contact réalisée à l'aide d'un cathéter en forme de ballon pourrait apporter une description plus complète de l'activité auriculaire. Dans cette étude, une expérience chez le chien a été conçue et analysée. Une reconstruction électro-anatomique, une cartographie épicardique (103 électrodes), une cartographie endocardique sans contact (2048 électrodes virtuelles calculées à partir un cathéter en forme de ballon avec 64 canaux) et des enregistrements endocardiques avec contact direct ont été réalisés simultanément. Les systèmes d'enregistrement ont été également simulés dans un modèle mathématique d'une oreillette droite de chien. Dans les simulations et les expériences (après la suppression du nœud atrio-ventriculaire), des cartes d'activation ont été calculées pendant le rythme sinusal. La repolarisation a été évaluée en mesurant l'aire sous l'onde T auriculaire (ATa) qui est un marqueur de gradient de repolarisation. Les résultats montrent un coefficient de corrélation épicardique-endocardique de 0.8 (expérience) and 0.96 (simulation) entre les cartes d'activation, et un coefficient de corrélation de 0.57 (expérience) and 0.92 (simulation) entre les valeurs de ATa. La cartographie endocardique sans contact apparait comme un instrument expérimental utile pour extraire de l'information en dehors des régions couvertes par les plaques d'enregistrement épicardique. / Atrial fibrillation is the most common clinical arrhythmia currently affecting 2.3 million patients in North America. To study its mechanisms and potential therapies, animal models of atrial fibrillation have been developed. Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to pacing, remodeling, arrhythmias and modulation of the autonomic nervous system. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. In this study, a dog experiment was designed and analyzed in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed. The recording system was also simulated in a computer model of the canine right atrium. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial endocardial correlation coefficient of 0.8 (experiment) and 0.96 (simulation) between activation times, and a correlation coefficient of 0.57 (experiment) and 0.92 (simulation) between ATa values. Noncontact mapping appears to be a valuable experimental device to retrieve information outside the regions covered by epicardial recording plaques.
7

Optical generation of tone-burst Rayleigh surface waves for nonlinear ultrasonic measurements

Swacek, Christian Bernhard 27 August 2012 (has links)
Conventional contact ultrasonic methods suffer from large variability, which is known to originate from a number of sources such as coupling variability, and the surface roughness at the transducer/specimen interface. The inherently small higherharmonic signals can be significantly influenced by the changes in contact conditions, especially in nonlinear ultrasonic measurements. For this reason, the noncontact generation and detection techniques are very attractive. This research first focuses on the optical generation of tone-burst surface acoustic waves in a metallic specimen. Two methods that use laser light as an optical source are compared for generating surface acoustics waves in the 5 MHz range. Both the shadow mask and diffraction grating are used to convert a laser pulse to a tone-burst signal pattern on the specimen. The generated signals are detected by a wedge transducer at a fixed location and then the harmonic contents in the generated signals and the repeatability of the methods are evaluated. Finally, the developed method is used to characterize the material nonlinearity of aluminum (Al 6061) and steel (A36). The results showed repeatable measurements for ablative signal excitation on aluminum.
8

Přesnost bezdotykového měření teploty / Accuracy of non-contacting Temperature Measurement

Horák, Ladislav January 2011 (has links)
This master’s thesis is specialized on the influence of correct parameters of emissivity, which depends on the temperature, wavelength and ambient environment. The investigation the parameter was taken infrared non-contact thermometer MI3 from company Raytek. To improve the quality of measurement was designed and programmed measuring utility program. The program was developed in the LabView 8.5 programming environment. To obtain the true value of the measured temperature of the target was designed and constructed the touch thermometer with the resistance dependent sensor. The thermometer is connected to the communication box of infrared thermometer and contain the same program. Nowadays are the most advanced IR thermometer with fixed parameters emissivity, which is applicable just to the real body in the vicinity of the parameter emissivity 0,95. For those IR thermometers were designed correction function, which would have temperature measured at a fixed emissivity parameter 0,95 set close to the actual value of the object.
9

MULTIMODAL NONCONTACT DIFFUSE OPTICAL REFLECTANCE IMAGING OF BLOOD FLOW AND FLUORESCENCE CONTRASTS

Irwin, Daniel 01 January 2018 (has links)
In this study we design a succession of three increasingly adept diffuse optical devices towards the simultaneous 3D imaging of blood flow and fluorescence contrasts in relatively deep tissues. These metrics together can provide future insights into the relationship between blood flow distributions and fluorescent or fluorescently tagged agents. A noncontact diffuse correlation tomography (ncDCT) device was firstly developed to recover flow by mechanically scanning a lens-based apparatus across the sample. The novel flow reconstruction technique and measuring boundary curvature were advanced in tandem. The establishment of CCD camera detection with a high sampling density and flow recovery by speckle contrast followed with the next instrument, termed speckle contrast diffuse correlation tomography (scDCT). In scDCT, an optical switch sequenced coherent near-infrared light into contact-based source fibers around the sample surface. A fully noncontact reflectance mode device finalized improvements by combining noncontact scDCT (nc_scDCT) and diffuse fluorescence tomography (DFT) techniques. In the combined device, a galvo-mirror directed polarized light to the sample surface. Filters and a cross polarizer in stackable tubes promoted extracting flow indices, absorption coefficients, and fluorescence concentrations (indocyanine green, ICG). The scDCT instrumentation was validated through detection of a cubical solid tissue-like phantom heterogeneity beneath a liquid phantom (background) surface where recovery of its center and dimensions agreed with the known values. The combined nc_scDCT/DFT identified both a cubical solid phantom and a tube of stepwise varying ICG concentration (absorption and fluorescence contrast). The tube imaged by nc_scDCT/DFT exhibited expected trends in absorption and fluorescence. The tube shape, orientation, and localization were recovered in general agreement with actuality. The flow heterogeneity localization was successfully extracted and its average relative flow values in agreement with previous studies. Increasing ICG concentrations induced notable disturbances in the tube region (≥ 0.25 μM/1 μM for 785 nm/830 nm) suggesting the graduating absorption (320% increase at 785 nm) introduced errors. We observe that 830 nm is lower in the ICG absorption spectrum and the correspondingly measured flow encountered less influence than 785 nm. From these results we anticipate the best practice in future studies to be utilization of a laser source with wavelength in a low region of the ICG absorption spectrum (e.g., 830 nm) or to only monitor flow prior to ICG injection or post-clearance. In addition, ncDCT was initially tested in a mouse tumor model to examine tumor size and averaged flow changes over a four-day interval. The next steps in forwarding the combined device development include the straightforward automation of data acquisition and filter rotation and applying it to in vivo tumor studies. These animal/clinical models may seek information such as simultaneous detection of tumor flow, fluorescence, and absorption contrasts or analyzing the relationship between variably sized fluorescently tagged nanoparticles and their tumor deposition relationship to flow distributions.
10

NONINVASIVE MULTIMODAL DIFFUSE OPTICAL IMAGING OF VULNERABLE TISSUE HEMODYNAMICS

Zhao, Mingjun 01 January 2019 (has links)
Measurement of tissue hemodynamics provides vital information for the assessment of tissue viability. This thesis reports three noninvasive near-infrared diffuse optical systems for spectroscopic measurements and tomographic imaging of tissue hemodynamics in vulnerable tissues with the goal of disease diagnosis and treatment monitoring. A hybrid near-infrared spectroscopy/diffuse correlation spectroscopy (NIRS/DCS) instrument with a contact fiber-optic probe was developed and utilized for simultaneous and continuous monitoring of blood flow (BF), blood oxygenation, and oxidative metabolism in exercising gastrocnemius. Results measured by the hybrid NIRS/DCS instrument in 37 subjects (mean age: 67 ± 6) indicated that vitamin D supplement plus aerobic training improved muscle metabolic function in older population. To reduce the interference and potential infection risk on vulnerable tissues caused by the contact measurement, a noncontact diffuse correlation spectroscopy/tomography (ncDCS/ncDCT) system was then developed. The ncDCS/ncDCT system employed optical lenses to project limited numbers of sources and detectors on the tissue surface. A motor-driven noncontact probe scanned over a region of interest to collect boundary data for three dimensional (3D) tomographic imaging of blood flow distribution. The ncDCS was tested for BF measurements in mastectomy skin flaps. Nineteen (19) patients underwent mastectomy and implant-based breast reconstruction were measured before and immediately after mastectomy. The BF index after mastectomy in each patient was normalized to its baseline value before surgery to get relative BF (rBF). Since rBF values in the patients with necrosis (n = 4) were significantly lower than those without necrosis (n = 15), rBF levels can be used to predict mastectomy skin flap necrosis. The ncDCT was tested for 3D imaging of BF distributions in chronic wounds of 5 patients. Spatial variations in BF contrasts over the wounded tissues were observed, indicating the capability of ncDCT in detecting tissue hemodynamic heterogeneities. To improve temporal/spatial resolution and avoid motion artifacts due to a long mechanical scanning of ncDCT, an electron-multiplying charge-coupled device based noncontact speckle contrast diffuse correlation tomography (scDCT) was developed. Validation of scDCT was done by imaging both high and low BF contrasts in tissue-like phantoms and human forearms. In a wound imaging study using scDCT, significant lower BF values were observed in the burned areas/volumes compared to surrounding normal tissues in two patients with burn. One limitation in this study was the potential influence of other unknown tissue optical properties such as tissue absorption coefficient (µa) on BF measurements. A new algorithm was then developed to extract both µa and BF using light intensities and speckle contrasts measured by scDCT at multiple source-detector distances. The new algorithm was validated using tissue-like liquid phantoms with varied values of µa and BF index. In-vivo validation and application of the innovative scDCT technique with the new algorithm is the subject of future work.

Page generated in 0.0354 seconds