• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dual sequential approximation methods in structural optimisation

Wood, Derren Wesley 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012 / ENGLISH ABSTRACT: This dissertation addresses a number of topics that arise from the use of a dual method of sequential approximate optimisation (SAO) to solve structural optimisation problems. Said approach is widely used because it allows relatively large problems to be solved efficiently by minimising the number of expensive structural analyses required. Some extensions to traditional implementations are suggested that can serve to increase the efficacy of such algorithms. The work presented herein is concerned primarily with three topics: the use of nonconvex functions in the definition of SAO subproblems, the global convergence of the method, and the application of the dual SAO approach to large-scale problems. Additionally, a chapter is presented that focuses on the interpretation of Sigmund’s mesh independence sensitivity filter in topology optimisation. It is standard practice to formulate the approximate subproblems as strictly convex, since strict convexity is a sufficient condition to ensure that the solution of the dual problem corresponds with the unique stationary point of the primal. The incorporation of nonconvex functions in the definition of the subproblems is rarely attempted. However, many problems exhibit nonconvex behaviour that is easily represented by simple nonconvex functions. It is demonstrated herein that, under certain conditions, such functions can be fruitfully incorporated into the definition of the approximate subproblems without destroying the correspondence or uniqueness of the primal and dual solutions. Global convergence of dual SAO algorithms is examined within the context of the CCSA method, which relies on the use and manipulation of conservative convex and separable approximations. This method currently requires that a given problem and each of its subproblems be relaxed to ensure that the sequence of iterates that is produced remains feasible. A novel method, called the bounded dual, is presented as an alternative to relaxation. Infeasibility is catered for in the solution of the dual, and no relaxation-like modification is required. It is shown that when infeasibility is encountered, maximising the dual subproblem is equivalent to minimising a penalised linear combination of its constraint infeasibilities. Upon iteration, a restorative series of iterates is produced that gains feasibility, after which convergence to a feasible local minimum is assured. Two instances of the dual SAO solution of large-scale problems are addressed herein. The first is a discrete problem regarding the selection of the point-wise optimal fibre orientation in the two-dimensional minimum compliance design for fibre-reinforced composite plates. It is solved by means of the discrete dual approach, and the formulation employed gives rise to a partially separable dual problem. The second instance involves the solution of planar material distribution problems subject to local stress constraints. These are solved in a continuous sense using a sparse solver. The complexity and dimensionality of the dual is controlled by employing a constraint selection strategy in tandem with a mechanism by which inconsequential elements of the Jacobian of the active constraints are omitted. In this way, both the size of the dual and the amount of information that needs to be stored in order to define the dual are reduced. / AFRIKAANSE OPSOMMING: Hierdie proefskrif spreek ’n aantal onderwerpe aan wat spruit uit die gebruik van ’n duale metode van sekwensi¨ele benaderde optimering (SBO; sequential approximate optimisation (SAO)) om strukturele optimeringsprobleme op te los. Hierdie benadering word breedvoerig gebruik omdat dit die moontlikheid skep dat relatief groot probleme doeltreffend opgelos kan word deur die aantal duur strukturele analises wat vereis word, te minimeer. Sommige uitbreidings op tradisionele implementerings word voorgestel wat kan dien om die doeltreffendheid van sulke algoritmes te verhoog. Die werk wat hierin aangebied word, het hoofsaaklik betrekking op drie onderwerpe: die gebruik van nie-konvekse funksies in die defini¨ering van SBO-subprobleme, die globale konvergensie van die metode, en die toepassing van die duale SBO-benadering op grootskaalse probleme. Daarbenewens word ’n hoofstuk aangebied wat fokus op die interpretasie van Sigmund se maasonafhanklike sensitiwiteitsfilter (mesh independence sensitivity filter) in topologie-optimering. Dit is standaard praktyk om die benaderde subprobleme as streng konveks te formuleer, aangesien streng konveksiteit ’n voldoende voorwaarde is om te verseker dat die oplossing van die duale probleem ooreenstem met die unieke stasionˆere punt van die primaal. Die insluiting van niekonvekse funksies in die definisie van die subprobleme word selde gepoog. Baie probleme toon egter nie-konvekse gedrag wat maklik deur eenvoudige nie-konvekse funksies voorgestel kan word. In hierdie werk word daar gedemonstreer dat sulke funksies onder sekere voorwaardes met vrug in die definisie van die benaderde subprobleme inkorporeer kan word sonder om die korrespondensie of uniekheid van die primale en duale oplossings te vernietig. Globale konvergensie van duale SBO-algoritmes word ondersoek binne die konteks van die CCSAmetode, wat afhanklik is van die gebruik en manipulering van konserwatiewe konvekse en skeibare benaderings. Hierdie metode vereis tans dat ’n gegewe probleem en elk van sy subprobleme verslap word om te verseker dat die sekwensie van iterasies wat geproduseer word, toelaatbaar bly. ’n Nuwe metode, wat die begrensde duaal genoem word, word aangebied as ’n alternatief tot verslapping. Daar word vir ontoelaatbaarheid voorsiening gemaak in die oplossing van die duaal, en geen verslappings-tipe wysiging word benodig nie. Daar word gewys dat wanneer ontoelaatbaarheid te¨engekom word, maksimering van die duaal-subprobleem ekwivalent is aan minimering van sy begrensingsontoelaatbaarhede (constraint infeasibilities). Met iterasie word ’n herstellende reeks iterasies geproduseer wat toelaatbaarheid bereik, waarna konvergensie tot ’n plaaslike KKT-punt verseker word. Twee gevalle van die duale SBO-oplossing van grootskaalse probleme word hierin aangespreek. Die eerste geval is ’n diskrete probleem betreffende die seleksie van die puntsgewyse optimale veselori¨entasie in die tweedimensionele minimum meegeefbaarheidsontwerp vir veselversterkte saamgestelde plate. Dit word opgelos deur middel van die diskrete duale benadering, en die formulering wat gebruik word, gee aanleiding tot ’n gedeeltelik skeibare duale probleem. Die tweede geval behels die oplossing van in-vlak materiaalverspredingsprobleme onderworpe aan plaaslike spanningsbegrensings. Hulle word in ’n kontinue sin opgelos met die gebruik van ’n yl oplosser. Die kompleksiteit en dimensionaliteit van die duaal word beheer deur gebruik te maak van ’n strategie om begrensings te selekteer tesame met ’n meganisme waardeur onbelangrike elemente van die Jacobiaan van die aktiewe begrensings uitgelaat word. Op hierdie wyse word beide die grootte van die duaal en die hoeveelheid inligting wat gestoor moet word om die duaal te definieer, verminder.
2

Bydraes tot die oplossing van die veralgemeende knapsakprobleem

Venter, Geertien 06 February 2013 (has links)
Text in Afikaans / In this thesis contributions to the solution of the generalised knapsack problem are given and discussed. Attention is given to problems with functions that are calculable but not necessarily in a closed form. Algorithms and test problems can be used for problems with closed-form functions as well. The focus is on the development of good heuristics and not on exact algorithms. Heuristics must be investigated and good test problems must be designed. A measure of convexity for convex functions is developed and adapted for concave functions. A test problem generator makes use of this measure of convexity to create challenging test problems for the concave, convex and mixed knapsack problems. Four easy-to-interpret characteristics of an S-function are used to create test problems for the S-shaped as well as the generalised knapsack problem. The in uence of the size of the problem and the funding ratio on the speed and the accuracy of the algorithms are investigated. When applicable, the in uence of the interval length ratio and the ratio of concave functions to the total number of functions is also investigated. The Karush-Kuhn-Tucker conditions play an important role in the development of the algorithms. Suf- cient conditions for optimality for the convex knapsack problem with xed interval lengths is given and proved. For the general convex knapsack problem, the key theorem, which contains the stronger necessary conditions, is given and proved. This proof is so powerful that it can be used to proof the adapted key theorems for the mixed, S-shaped and the generalised knapsack problems as well. The exact search-lambda algorithm is developed for the concave knapsack problem with functions that are not in a closed form. This algorithm is used in the algorithms to solve the mixed and S-shaped knapsack problems. The exact one-step algorithm is developed for the convex knapsack problem with xed interval length. This algorithm is O(n). The general convex knapsack problem is solved by using the pivot algorithm which is O(n2). Optimality cannot be proven but in all cases the optimal solution was found and for all practical reasons this problem will be considered as being concluded. A good heuristic is developed for the mixed knapsack problem. Further research can be done on this heuristic as well as on the S-shaped and generalised knapsack problems. / Mathematical Sciences / D. Phil. (Operasionele Navorsing)
3

Bydraes tot die oplossing van die veralgemeende knapsakprobleem

Venter, Geertien 06 February 2013 (has links)
Text in Afikaans / In this thesis contributions to the solution of the generalised knapsack problem are given and discussed. Attention is given to problems with functions that are calculable but not necessarily in a closed form. Algorithms and test problems can be used for problems with closed-form functions as well. The focus is on the development of good heuristics and not on exact algorithms. Heuristics must be investigated and good test problems must be designed. A measure of convexity for convex functions is developed and adapted for concave functions. A test problem generator makes use of this measure of convexity to create challenging test problems for the concave, convex and mixed knapsack problems. Four easy-to-interpret characteristics of an S-function are used to create test problems for the S-shaped as well as the generalised knapsack problem. The in uence of the size of the problem and the funding ratio on the speed and the accuracy of the algorithms are investigated. When applicable, the in uence of the interval length ratio and the ratio of concave functions to the total number of functions is also investigated. The Karush-Kuhn-Tucker conditions play an important role in the development of the algorithms. Suf- cient conditions for optimality for the convex knapsack problem with xed interval lengths is given and proved. For the general convex knapsack problem, the key theorem, which contains the stronger necessary conditions, is given and proved. This proof is so powerful that it can be used to proof the adapted key theorems for the mixed, S-shaped and the generalised knapsack problems as well. The exact search-lambda algorithm is developed for the concave knapsack problem with functions that are not in a closed form. This algorithm is used in the algorithms to solve the mixed and S-shaped knapsack problems. The exact one-step algorithm is developed for the convex knapsack problem with xed interval length. This algorithm is O(n). The general convex knapsack problem is solved by using the pivot algorithm which is O(n2). Optimality cannot be proven but in all cases the optimal solution was found and for all practical reasons this problem will be considered as being concluded. A good heuristic is developed for the mixed knapsack problem. Further research can be done on this heuristic as well as on the S-shaped and generalised knapsack problems. / Mathematical Sciences / D. Phil. (Operasionele Navorsing)

Page generated in 0.1096 seconds