• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 25
  • 16
  • 9
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 236
  • 236
  • 52
  • 40
  • 30
  • 30
  • 30
  • 30
  • 25
  • 22
  • 21
  • 19
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Laboratory analysis of small strain moduli in compacted silts

Weidinger, David M., January 2008 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2008. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed October 20, 2008) Includes bibliographical references.
22

Amplitude correction for reduced axis scanning of layered materials

Zhang, Peihong. January 2004 (has links)
Thesis (Ph. D.)--Colorado State University, 2004. / Includes bibliographical references.
23

Ultrasonic wave propagation in poly(vinyl alcohol) and articular cartilage

Hsu, Hsingching. January 2004 (has links) (PDF)
Thesis (M.S.)--School of Mechanical Engineering, Georgia Institute of Technology, 2005. Directed by Marc Levenston. / Marc Levenston, Committee Co-Chair ; Yves Berthelot, Committee Co-Chair ; Robert Guldberg, Committee Member. Includes bibliographical references.
24

Structural integrity assessment of cantilevered type concrete structures by instrumented impact hammer (IIH) technique & ultrasonic pulse velocity (UPV) technique

Chan, Denny Yuk. January 2005 (has links) (PDF)
Thesis (M.Sc.)--City University of Hong Kong, 2005. / At head of title: City University of Hong Kong, Department of Physics and Materials Science, Master of Science in materials engineering & nanotechnology dissertation. Title from title screen (viewed on Aug. 31, 2006) Includes bibliographical references.
25

Non-destructive evaluation with ultrasonic pulse velocity (UPV) in concrete structure

Lau, Connie K. Y. January 2005 (has links) (PDF)
Thesis (M.Sc.)--City University of Hong Kong, 2005. / At head of title: City University of Hong Kong, Department of Physics and Materials Science, Master of Science in materials engineering & nanotechnology dissertation. Title from title screen (viewed on Sept. 1, 2006) Includes bibliographical references.
26

Non-destructive evaluation with ultrasonic pulse velocity (UPV) in concrete structure

Mong, Seng Ming. January 2005 (has links) (PDF)
Thesis (M.Sc.)--City University of Hong Kong, 2005. / At head of title: City University of Hong Kong, Department of Physics and Materials Science, Master of Science in materials engineering & nanotechnology dissertation. Title from title screen (viewed on Sept. 4, 2006) Includes bibliographical references.
27

Nondestructive Flaw Characterization in a Unidirectional Composite Plate

Imbert de Smirnoff, Severine January 2002 (has links) (PDF)
No description available.
28

Theory of Eddy Currents for Nondestructive Testing

Biddle, Craig Charles 01 January 1976 (has links) (PDF)
Eddy current inspection methods are used extensively in industry for the nondestructive testing of a wide variety of materials and product applications. The general theory of eddy current inspection is described. Equations defining the depth of penetration are derived from Maxwell's equations. Signal analysis methods are described using coil impedance diagrams. The impedance diagrams for a number of inspection applications are presented. A discussion of the techniques for theoretical calculation of the impedance of a coil is described. Typical coil configurations and instrumentation techniques are discussed.
29

A Study of Nondestructive Testing and Inspection Processes Used in Industry with Implications for Program Planning in the Junior Colleges of Texas

Stokes, Vernon L. 08 1900 (has links)
The problem was obtaining relevant subject matter pertaining to nondestructive testing and inspection processes used in industry for program planning purposes in the junior colleges of Texas.
30

Defect and thickness inspection system for cast thin films using machine vision and full-field transmission densitometry

Johnson, Jay Tillay 17 November 2009 (has links)
Quick mass production of homogeneous thin film material is required in paper, plastic, fabric, and thin film industries. Due to the high feed rates and small thicknesses, machine vision and other nondestructive evaluation techniques are used to ensure consistent, defect-free material by continuously assessing post-production quality. One of the fastest growing inspection areas is for 0.5-500 micrometer thick thin films, which are used for semiconductor wafers, amorphous photovoltaics, optical films, plastics, and organic and inorganic membranes. As a demonstration application, a prototype roll-feed imaging system has been designed to inspect high-temperature polymer electrolyte membrane (PEM), used for fuel cells, after being die cast onto a moving transparent substrate. The inspection system continuously detects thin film defects and classifies them with a neural network into categories of holes, bubbles, thinning, and gels, with a 1.2% false alarm rate, 7.1% escape rate, and classification accuracy of 96.1%. In slot die casting processes, defect types are indicative of a misbalance in the mass flow rate and web speed; so, based on the classified defects, the inspection system informs the operator of corrective adjustments to these manufacturing parameters. Thickness uniformity is also critical to membrane functionality, so a real-time, full-field transmission densitometer has been created to measure the bi-directional thickness profile of the semi-transparent PEM between 25-400 micrometers. The local thickness of the 75 mm x 100 mm imaged area is determined by converting the optical density of the sample to thickness with the Beer-Lambert law. The PEM extinction coefficient is determined to be 1.4 D/mm and the average thickness error is found to be 4.7%. Finally, the defect inspection and thickness profilometry systems are compiled into a specially-designed graphical user interface for intuitive real-time operation and visualization.

Page generated in 0.0892 seconds