• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 2
  • 1
  • Tagged with
  • 20
  • 20
  • 20
  • 8
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal rectification in one-dimensional nonlinear systems

He, Dahai 01 January 2008 (has links)
No description available.
2

Applications of nonequilibrium statistical physics to ecological systems

Guttal, Vishwesha, January 2008 (has links)
Thesis (Ph. D.)--Ohio State University, 2008. / Title from first page of PDF file. Includes bibliographical references (p. 123-135).
3

Optical tweezers : experimental demonstrations of the fluctuation theorem /

Carberry, David Michael. January 2005 (has links)
Thesis (Ph.D.)--Australian National University, 2005.
4

Optical Tweezers: Experimental Demonstrations of the Fluctuation Theorem

Carberry, David Michael, dave_carberry@yahoo.com.au January 2006 (has links)
In the late 19th and early 20th centuries famous scientists like Boltzmann, Loschmidt, Maxwell and Einstein tried, unsuccessfully, to find the link between the time-reversible equations of motion of individual molecules and irreversible thermodynamics. The solution to this puzzle was found in 1993, and the link is now known as the Fluctuation Theorem (FT). In the decade that followed theory and computer simulation tested the FT and, in 2002, an experiment indirectly demonstrated the FT.¶ This thesis describes original experiments that demonstrate the FT directly using Optical Tweezers. A related expression, known as the Kawasaki Identity, is also experimentally demonstrated. These experimental results provide a rigorous demonstration that irreversible dynamics can be obtained from a system with time-reversible dynamics.
5

Stochastic fluctuations far from equilibrium : statistical mechanics of surface growth /

Chin, Chen-Shan, January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 106-114).
6

Flocking in active matter systems : structure and response to perturbations

Kyriakopoulos, Nikos January 2016 (has links)
Flocking, the collective motion of systems consisting of many agents, is a ubiquitous phenomenon in nature, observed both in biological and artificial systems. The understanding of such systems is important from both a theoretical point of view, as it extends the field of statistical physics to non-equilibrium systems, and from a practical point of view, due to the emergence of applications that are based on the modelling. In the present thesis I numerically investigated several aspects of flocking dynamics, simulating systems consisting of up to millions of particles. One first problem I worked on regarded the flocks response to external perturbations, something that had received little attention so far. The result was a scaling relation, connecting the asymptotic response of a flock to the strength of the external fleld affecting it. Additionally, my preliminary results point towards a generalised fluctuation-dissipation relation for the short-time response, with two different effective temperatures depending on the direction at which the perturbing field is applied. Another aspect I studied was the stability and dynamical properties of non-confined active systems (finite flocks in open space). The results showed that these flocks are stable only when an attracting 'social force' keeps the agents from drifting away from each other. The velocity fluctuations correlations were found to be different than the asymptotic limit predictions of hydrodynamic theories for infinite flocks. Finally, I studied the clustering dynamics of flocking systems. The conclusion was that the non-equilibrium clustering in the ordered phase is regulated by an anisotropic percolation transition, while it does not drive the order-disorder transition, contrary to earlier conjectures. I believe the results of this work answer some important questions in the field of ordered active matter, while at the same time opening new and intriguing ones, that will hopefully be tackled in the near future.
7

Dinâmica estocástica de populações biológicas / Stochastic Dynamics of Biological Poupulations

Hirata, Flávia Mayumi Ruziska 15 August 2017 (has links)
Nesta tese investigamos modelos irreversíveis dentro do contexto da mecânica estatística de não-equilíbrio motivados por alguns problemas de dinâmicas de populações biológicas. Procuramos identificar a existência de transições de fase e as classes de universalidade às quais os modelos pertencem. Além disso, buscamos modelos que capturem as principais características dos sistemas biológicos que procuramos descrever. Encontramos a solução analítica exata para o modelo suscetível-infectado-recuperado (SIR) em uma rede unidimensional. Investigamos o modelo suscetível-infectado-recuperado com infecção recorrente. Mostramos que o modelo pertence à classe de universalidade da percolação isotrópica, salvo pelos parâmetros em que se torna o processo de contato. Obtivemos também a linha de transição entre as fases em que há e não há propagação da epidemia, através de aproximações de campo médio e por simulações de Monte Carlo do modelo na rede quadrada. Investigamos uma dinâmica para duas espécies biológicas e dois nichos ecológicos; para tanto introduzimos um modelo estocástico irreversível de quatro estados. Concluímos que o modelo oferece uma descrição para as oscilações temporais das populações das espécies e para a alternância de dominância entre estas. Para chegar a esta conclusão, utilizamos simulações de Monte Carlo do modelo na rede quadrada, aproximações de campo médio e a abordagem da equação mestra de nascimento e morte, a qual, para grandes populações, pode ser aproximada por uma equação de Fokker-Planck que é associada a um conjunto de equações de Langevin. Por fim, usando simulações de Monte Carlo, analisamos a dinâmica de duas espécies biológicas e dois nichos ecológicos incluindo difusão. Novamente verificamos que o modelo gera cenários com oscilações temporais das populações das espécies e alternância de dominância entre estas. Ademais, concluímos que modelo pertence à classe de universalidade da percolação direcionada e obtivemos o diagrama de fase. / In this thesis we investigate irreversible models within the context of nonequilibrium statistical mechanics motivated by some problems of biological population dynamics. We look for dentifying the existence of phase transition and the universality classes to which the models belong. In addition to that, we look for models that capture the main characteristics of the biological systems which we are interested in describing. We found the exact analytic solution of the susceptible-infected-recovered (SIR) model on one-dimensional lattice. We investigated the susceptible-infected-recovered model with recurrent infection. We showed that the model belongs to the isotropic percolation universality class, except for the parameters that make the model become a contact process. We obtained the transition line between the phases in which there is propagation of the epidemic and in which there is not, by means of mean-field approximations and Monte Carlo simulations on a square lattice. Furthermore, we investigated a dynamic for two biological species and ecological niches; for this purpose we introduced an irreversible stochastic model with four states. We conclude that the modoffers a description of time oscillations of the species populations and of the alternating dominance between them. To achieve this conclusion we used Monte Carlo simulations of this model on a square lattice, mean-field approximation, and the birth and death master equation approach, which for large populations can be approximated by a Fokker-Planck equation that is associated to a set of Langevin equations. Finally, using Monte Carlo simulations, we analyzed a dynamic for two biological species and ecological niches including diffusion. Again, we verified that the model generates scenarios with time oscillations of the species populations and with alternating dominance between them. Also, we conclude that the model belongs to the directed percolation universality class and we found the phase diagram.
8

Scaling and phase transitions in one-dimensional nonequilibrium driven systems /

Ha, Meesoon, January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 99-114).
9

Enabling the direct simulation (Monte Carlo) of physical vapor deposition

Venkataraman, Ramprasad. Unknown Date (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2008. / Title from PDF of title page (viewed July 24, 2009). Includes bibliographical references (p. 129-138).
10

Dinâmica estocástica de populações biológicas / Stochastic Dynamics of Biological Poupulations

Flávia Mayumi Ruziska Hirata 15 August 2017 (has links)
Nesta tese investigamos modelos irreversíveis dentro do contexto da mecânica estatística de não-equilíbrio motivados por alguns problemas de dinâmicas de populações biológicas. Procuramos identificar a existência de transições de fase e as classes de universalidade às quais os modelos pertencem. Além disso, buscamos modelos que capturem as principais características dos sistemas biológicos que procuramos descrever. Encontramos a solução analítica exata para o modelo suscetível-infectado-recuperado (SIR) em uma rede unidimensional. Investigamos o modelo suscetível-infectado-recuperado com infecção recorrente. Mostramos que o modelo pertence à classe de universalidade da percolação isotrópica, salvo pelos parâmetros em que se torna o processo de contato. Obtivemos também a linha de transição entre as fases em que há e não há propagação da epidemia, através de aproximações de campo médio e por simulações de Monte Carlo do modelo na rede quadrada. Investigamos uma dinâmica para duas espécies biológicas e dois nichos ecológicos; para tanto introduzimos um modelo estocástico irreversível de quatro estados. Concluímos que o modelo oferece uma descrição para as oscilações temporais das populações das espécies e para a alternância de dominância entre estas. Para chegar a esta conclusão, utilizamos simulações de Monte Carlo do modelo na rede quadrada, aproximações de campo médio e a abordagem da equação mestra de nascimento e morte, a qual, para grandes populações, pode ser aproximada por uma equação de Fokker-Planck que é associada a um conjunto de equações de Langevin. Por fim, usando simulações de Monte Carlo, analisamos a dinâmica de duas espécies biológicas e dois nichos ecológicos incluindo difusão. Novamente verificamos que o modelo gera cenários com oscilações temporais das populações das espécies e alternância de dominância entre estas. Ademais, concluímos que modelo pertence à classe de universalidade da percolação direcionada e obtivemos o diagrama de fase. / In this thesis we investigate irreversible models within the context of nonequilibrium statistical mechanics motivated by some problems of biological population dynamics. We look for dentifying the existence of phase transition and the universality classes to which the models belong. In addition to that, we look for models that capture the main characteristics of the biological systems which we are interested in describing. We found the exact analytic solution of the susceptible-infected-recovered (SIR) model on one-dimensional lattice. We investigated the susceptible-infected-recovered model with recurrent infection. We showed that the model belongs to the isotropic percolation universality class, except for the parameters that make the model become a contact process. We obtained the transition line between the phases in which there is propagation of the epidemic and in which there is not, by means of mean-field approximations and Monte Carlo simulations on a square lattice. Furthermore, we investigated a dynamic for two biological species and ecological niches; for this purpose we introduced an irreversible stochastic model with four states. We conclude that the modoffers a description of time oscillations of the species populations and of the alternating dominance between them. To achieve this conclusion we used Monte Carlo simulations of this model on a square lattice, mean-field approximation, and the birth and death master equation approach, which for large populations can be approximated by a Fokker-Planck equation that is associated to a set of Langevin equations. Finally, using Monte Carlo simulations, we analyzed a dynamic for two biological species and ecological niches including diffusion. Again, we verified that the model generates scenarios with time oscillations of the species populations and with alternating dominance between them. Also, we conclude that the model belongs to the directed percolation universality class and we found the phase diagram.

Page generated in 0.1315 seconds