• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prediction of air nonequilibrium radiation with a collisional-radiative model : Application to shock-tube conditions relevant to Earth reentry / Prédiction du rayonnement hors équilibre d’un plasma d’air avec un modèle collisionel-radiatif : Application aux expériences de tubes à choc pour des conditions représentatives d’une rentrée sur Terre

Lemal, Adrien 10 July 2013 (has links)
Sous conditions de fort déséquilibre thermodynamique, les populations des états internes émettant dans le VUV et l’infrarouge ne suivent plus une distribution de Boltzmann mais sont contrôlés par des processus collisionels et radiatifs. Nous avons développé un nouveau modèle collisionel-radiatif (CR) comprenant les mécanismes d’excitation et d’ionisation par impact d’électrons et de particules lourdes, ainsi que les transitions radiatives. Une revue exhaustive des diverses données expérimentales et théoriques nous a conduit à sélectionner les formulations les plus appropriées. Les transitions radiatives on été traitées via le concept de facteur d’échappement, égal à 0 pour les transitions dans le VUV, et à 1 pour les transitions dans l’infrarouge, en accord avec les récents calculs de la littérature. Nous avons interfacé notre modèle CR avec un code d’écoulement et un code spectral en vue de prédire les luminances récemment mesurées dans le tube à choc EAST de la NASA. Nous avons choisi deux conditions représentatives d’une rentrée hypervéloce sur Terre: V∞=10.6 et 11.12 km/s, à pression p∞=13.3 Pa. Nous avons comparé les densités d’électrons prédites par le modèle d’écoulement avec celles extraites des caméras CCD et avons obtenu un excellent accord, validant de fait le modèle d’ionisation et nous permettant de déterminer la position du choc. Ensuite, nous avons comparé les profils de luminance prédits par le modèle CR mesurés dans le VUV et l’infrarouge avec les données expérimentales et avons obtenu un excellent accord. Nous avons ainsi montré que les collisions par impact de particules lourdes sont cruciales et doivent être déterminés précisément en vue de prédire le flux radiatif dans le VUV, lequel peut représenter 60% du flux total reçu par le vaisseau spatial lors de sa rentrée dans l’atmosphère terrestre. / Under nonequilibrium, the populations of the electronic states that strongly radiate in the VUV and IR are no longer governed by a Boltzmann distribution but rather by collisional and radiative processes. A new collisional-radiative (CR) model was developed including the key processes chief among them electron-impact excitation and ionization, heavy-particle impact excitation and bound-bound transitions. A comprehensive review of the available experimental and theoretical reaction rates governing these processes was undertaken to produce a reliable set of rates. The bound-bound radiative mechanisms were treated using the escape factor concept, set to zero for VUV lines and set to one for infrared lines, in accordance with literature results. The CR model was interfaced with the a flowfield solver and with a radiation code to predict the nonequilibrium VUV and IR radiation spectra very recently measured in the EAST facility at NASA Ames Research Center. Two shock-tube conditions representative of a Lunar return reentry trajectory were selected: V∞=10.6 and 11.12 km/s, both at p∞=13.3 Pa. The electron number density profiles inferred from experiments were compared with the prediction of the flowfield model, showing excellent agreement in trend and absolute magnitude for both freestream conditions, and thus validating the ionization model and providing a way to accurately locate the shock front in the CCD images. Then, the experimental intensity profiles were compared with the prediction of the CR model. Excellent agreement between predicted and measured intensity profiles was obtained for both freestream conditions, when adjusting the heavy-particle impact excitation rate constants of Park (1985), suggesting that the nonequilibrium peak intensities observed in the VUV and IR spectral ranges are controled by heavy-particle impact processes.

Page generated in 0.0832 seconds