Spelling suggestions: "subject:"nonextensive paradigm"" "subject:"onextensive paradigm""
1 |
Desenvolvimento de uma base de funções paramétricas para interpolação de imagens médicas / Development of parametric basis function for interpolation of medical imagesSoares, Isaias José Amaral 03 July 2013 (has links)
O uso de imagens é crucial na medicina, e seu uso no diagnóstico de doenças é uma das principais ferramentas clínicas da atualidade. Porém, frequentemente necessitam de pós-processamento para serem úteis. Embora ferramentas clássicas sejam utilizadas para esse fim, elas não dão tratamento específico a certas características de imagens fractais, como as provindas de sistemas biológicos. Nesse enfoque, este trabalho objetivou a criação de novas bases de interpolação utilizando a Q-Estatística para verificar se seriam estas seriam adequadas à representação de objetos com características fractais que as bases clássicas. Foram criados dois tipos de splines: uma unidimensional e outra bidimensional, que permitiram um tipo diferente de interpolação, fundamentado na q-Estatística. Os testes demonstraram a potencialidade dessas ferramentas para uso em sinais e imagens médicas, com acentuada redução do erro de interpolação no caso unidimensional (em até 351,876%) e uma redução sutil no caso bidimensional (0,3%). Como resultado adicional, foram criados filtros de imagens e avaliados seus resultados em imagens médicas, que resultaram em melhorias de até 1.340% de ganho efetivo na remoção de ruídos de natureza fractal (marrom). Os resultados sugerem que as q-bases desenvolvidas foram capazes de representar melhor imagens e sinais médicos, bem como é interessante o uso dos filtros desenvolvidos na remoção de diversos tipos de ruído do tipo 1/f^b. / The use of images is crucial in modern medicine, and diagnostic imaging is a major clinical tools used in detecting, monitoring and completion of many treatments. However, often the images need to be post-processed for display to health professionals or automated analysis, searching for signs of abnormalities. Although classical tools are used for that purpose, they do not give special treatment to certain characteristics of fractal images, such as those coming from biological systems. These characteristics are produced, in general, by complex dynamic systems as a result of internal interactions of sub-system components, giving the system a fractal character. In this context, the main objective of this work was to propose interpolation bases using the Q-statistic, creating bases of Q-interpolation, and verify if such bases would be best suited to the representation of objects with fractal characteristics than classical bases, assumed the premise that such a theory model best this kind of phenomenon than classical theory. Based on this hypothesis, we created two types of splines: one-dimensional and one-dimensional, called Q-splines, which allow a different type of interpolation and they can capture behaviors as super-additive or sub-additive among the constituents of a spline. These models have demonstrated numerically the potential use of this type of interpolation for use in signals and medical images, reducing the interpolation error by up to 351.876 % in the one-dimensional case and 0.3 % in two dimensional. As secondary results, were defined two families of image filters, called anisotropic Q-filters and isotropic Q-filters, and their results were evaluated in real medical images. In virtually all analyzes it was possible to obtain the best results from conventional approaches, sometimes with improvements of 1.340 % in some filters, in removing noise fractal nature (brown). The results were more modest for the interpolation of two-dimensional images, however, generally proved exciting and encouraging, clearly showing that these new approaches are not only viable, but also can produce better results compared to classical approaches. Based on these results, we concluded that the Q-bases developed are best able to represent not only signs but medical imaging (1D and 2D) although its use can be improved by the adoption of approaches adapted to the vector representation of information, that favor the use of splines. Similarly, the Q-filters were more suitable for the processing of medical signals when compared to conventional approaches.
|
2 |
Desenvolvimento de uma base de funções paramétricas para interpolação de imagens médicas / Development of parametric basis function for interpolation of medical imagesIsaias José Amaral Soares 03 July 2013 (has links)
O uso de imagens é crucial na medicina, e seu uso no diagnóstico de doenças é uma das principais ferramentas clínicas da atualidade. Porém, frequentemente necessitam de pós-processamento para serem úteis. Embora ferramentas clássicas sejam utilizadas para esse fim, elas não dão tratamento específico a certas características de imagens fractais, como as provindas de sistemas biológicos. Nesse enfoque, este trabalho objetivou a criação de novas bases de interpolação utilizando a Q-Estatística para verificar se seriam estas seriam adequadas à representação de objetos com características fractais que as bases clássicas. Foram criados dois tipos de splines: uma unidimensional e outra bidimensional, que permitiram um tipo diferente de interpolação, fundamentado na q-Estatística. Os testes demonstraram a potencialidade dessas ferramentas para uso em sinais e imagens médicas, com acentuada redução do erro de interpolação no caso unidimensional (em até 351,876%) e uma redução sutil no caso bidimensional (0,3%). Como resultado adicional, foram criados filtros de imagens e avaliados seus resultados em imagens médicas, que resultaram em melhorias de até 1.340% de ganho efetivo na remoção de ruídos de natureza fractal (marrom). Os resultados sugerem que as q-bases desenvolvidas foram capazes de representar melhor imagens e sinais médicos, bem como é interessante o uso dos filtros desenvolvidos na remoção de diversos tipos de ruído do tipo 1/f^b. / The use of images is crucial in modern medicine, and diagnostic imaging is a major clinical tools used in detecting, monitoring and completion of many treatments. However, often the images need to be post-processed for display to health professionals or automated analysis, searching for signs of abnormalities. Although classical tools are used for that purpose, they do not give special treatment to certain characteristics of fractal images, such as those coming from biological systems. These characteristics are produced, in general, by complex dynamic systems as a result of internal interactions of sub-system components, giving the system a fractal character. In this context, the main objective of this work was to propose interpolation bases using the Q-statistic, creating bases of Q-interpolation, and verify if such bases would be best suited to the representation of objects with fractal characteristics than classical bases, assumed the premise that such a theory model best this kind of phenomenon than classical theory. Based on this hypothesis, we created two types of splines: one-dimensional and one-dimensional, called Q-splines, which allow a different type of interpolation and they can capture behaviors as super-additive or sub-additive among the constituents of a spline. These models have demonstrated numerically the potential use of this type of interpolation for use in signals and medical images, reducing the interpolation error by up to 351.876 % in the one-dimensional case and 0.3 % in two dimensional. As secondary results, were defined two families of image filters, called anisotropic Q-filters and isotropic Q-filters, and their results were evaluated in real medical images. In virtually all analyzes it was possible to obtain the best results from conventional approaches, sometimes with improvements of 1.340 % in some filters, in removing noise fractal nature (brown). The results were more modest for the interpolation of two-dimensional images, however, generally proved exciting and encouraging, clearly showing that these new approaches are not only viable, but also can produce better results compared to classical approaches. Based on these results, we concluded that the Q-bases developed are best able to represent not only signs but medical imaging (1D and 2D) although its use can be improved by the adoption of approaches adapted to the vector representation of information, that favor the use of splines. Similarly, the Q-filters were more suitable for the processing of medical signals when compared to conventional approaches.
|
Page generated in 0.075 seconds