Spelling suggestions: "subject:"nongonococcal urethritis"" "subject:"nongonococcal arthritis""
1 |
Exploring the Bacterial Diversity of the Male Urethra During Idiopathic UrethritisFarrell, Rowan Micah 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Idiopathic urethritis (IU) comprises up to 50% of symptomatic cases of male urethritis in clinical settings. The syndrome is of an unknown etiology but may be due to an as yet unidentified bacterial pathogen(s). We were interested in identifying pathogens that could cause IU using multiple methods. Shotgun metagenomic sequencing or 16S rRNA sequencing methods can provide rich datasets but are limited by the completeness of the corresponding sequence reference databases. We generated metagenomic and 16S datasets from DNA extracted from urethral swabs of men with IU to determine the composition of their urethral microbiome. In order to enrich the corresponding reference databases used to identify the reads in the sequence datasets, I cultivated bacteria from the first void urine (FVU) of men with IU. My goal was to grow and whole genome sequence bacterial isolates that are not currently represented in the reference databases.
Of the 216 men we enrolled at the Bell Flower STD clinic in Indianapolis, IN, 59 men had IU. I grew a total of 802 isolates from the FVU of the IU patients and identified those isolates using colony-based 16S rRNA PCR. Based on % sequence similarity to the nearest type strain, I sorted the 16S alleles into four categories: Species (≥98 % identity) (N=264), Genus (≥95 % identity) (N=407), Closest Match (<95 % identity) (N=95), and No Hit (0 % identity) (N=22). There were 24 genera represented in the isolate collection. Of these, the six most abundant genera were Streptococcus, Staphylococcus, Corynebacterium, Haemophilus, Gardnerella, and Prevotella. These six genera composed nearly 80% of all IU-associated isolates. All sequences below 98% sequence similarity represent potentially novel strains of bacteria. We will proceed with whole genome sequencing of bacterial isolates with the goal of improving genome database coverage of bacterial diversity in the male urethra.
|
2 |
The Detection and Analysis of Pathogen-Reactive Immunoglobulins in the Urine of Men With Nongonococcal UrethritisRyan, John D. 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Inflammation of the urethra—urethritis—is commonly diagnosed in men and women who have sexually transmitted infections (STI). Characteristic signs and symptoms of urethritis include urethral discharge and burning pain during urination (dysuria). However, these findings are non-specific and can be elicited by STI for which optimal treatment approaches differ. We wanted to investigate if immunoglobulins (antibodies) in the urine of men with acute urethritis could determine the etiologies of these cases. Previously, we conducted an observational case-control study of biological males to compare the urethral microbiota of participants with unambiguous, laboratory-confirmed urethritis (cases) and participants without urethral inflammation (controls). This revealed that nearly 2 in 5 men with nongonococcal urethritis tested negative for all common STI. We identified atypical urethral pathogens in approximately 1/3 of these STI-negative individuals using shotgun metagenomic sequencing. However, we did not detect microorganisms suspected to be urethral pathogens in the remaining 2/3 of STI-negative participants. We hypothesized that these men with “pathogen-negative” urethritis had persisting inflammation from a recent STI that already cleared spontaneously by the time of testing. We observed that urine IgA antibodies against Chlamydia trachomatis (Ctr) infectious particles were significantly more prevalent among men with pathogen-negative urethritis compared to controls. In contrast, we found that the prevalence of urine anti-Ctr IgA was similar between controls and urethritis cases with atypical infections. However, our efforts to detect antibodies against another common STI, Mycoplasma genitalium (Mgen), were complicated by low abundance in urine and the unexpected prevalence of Mgen-reactive antibodies among controls. Collectively, our results suggest that signs and symptoms of urethritis can continue after the causative STI(s) have been eliminated. Furthermore, male urine represents a practical, non-invasive source of pathogen-reactive antibodies that could be evaluated using point-of-care diagnostic tests to elucidate urethritis etiologies. Importantly, our results also suggest that sexual partners of men with pathogen-negative, nongonococcal urethritis are an unrecognized chlamydia reservoir. / 2024-05-22
|
Page generated in 0.0587 seconds