• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Large transient waves in shallow water

Smith, Susan Frances January 1999 (has links)
No description available.
2

Stability Analysis and Design of a Tracking Filter for Variable Frequency Applications

Aramane, Pranav 01 January 2018 (has links)
The work presented in this thesis is a frequency adaptive tracking filter that can be used in exact tracking of power frequencies and rejection of unwanted harmonics introduced during power disturbances. The power synchronization process includes power converters and other equipment that have many non-linear components that introduce unwanted harmonics. This new design is motivated by the requirement of a filter that can filter all the harmonics and exactly track a rapidly varying fundamental frequency with little time delay and phase error. This thesis analyzes the proposed filter mathematically based on Lyapunov theory and simulations are presented to show the performance of the design in rapid frequency variations.
3

DESIGNS FOR TESTING LACK OF FIT FOR A CLASS OF SIGMOID CURVE MODELS

Su, Ying January 2012 (has links)
Sigmoid curves have found broad applicability in biological sciences and biopharmaceutical research during the last decades. A well planned experiment design is essential to accurately estimate the parameters of the model. In contrast to a large literature and extensive results on optimal designs for linear models, research on the design for nonlinear, including sigmoid curve, models has not kept pace. Furthermore, most of the work in the optimal design literature for nonlinear models concerns the characterization of minimally supported designs. These minimal, optimal designs are frequently criticized for their inability to check goodness of fit, as there are no additional degrees of freedom for the testing. This design issue can be a serious problem, since checking the model adequacy is of particular importance when the model is selected without complete certainty. To assess for lack of fit, we must add at least one extra distinct design point to the experiment. The goal of this dissertation is to identify optimal or highly efficient designs capable of checking the fit for sigmoid curve models. In this dissertation, we consider some commonly used sigmoid curves, including logistic, probit and Gompertz models with two, three, or four parameters. We use D-optimality as our design criterion. We first consider adding one extra point to the design, and consider five alternative designs and discuss their suitability to test for lack of fit. Then we extend the results to include one more additional point to better understand the compromise among the need of detecting lack of fit, maintaining high efficiency and the practical convenience for the practitioners. We then focus on the two-parameter Gompertz model, which is widely used in fitting growth curves yet less studied in literature, and explore three-point designs for testing lack of fit under various error variance structures. One reason that nonlinear design problems are so challenging is that, with nonlinear models, information matrices and optimal designs depend on the unknown model parameters. We propose a strategy to bypass the obstacle of parameter dependence for the theoretical derivation. This dissertation also successfully characterizes many commonly studied sigmoid curves in a generalized way by imposing unified parameterization conditions, which can be generalized and applied in the studies of other sigmoid curves. We also discuss Gompertz model with different error structures in finding an extra point for testing lack of fit. / Statistics

Page generated in 0.0507 seconds