• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Examination of Mixed-Effects Models with Nonparametrically Generated Data

January 2019 (has links)
abstract: Previous research has shown functional mixed-effects models and traditional mixed-effects models perform similarly when recovering mean and individual trajectories (Fine, Suk, & Grimm, 2019). However, Fine et al. (2019) showed traditional mixed-effects models were able to more accurately recover the underlying mean curves compared to functional mixed-effects models. That project generated data following a parametric structure. This paper extended previous work and aimed to compare nonlinear mixed-effects models and functional mixed-effects models on their ability to recover underlying trajectories which were generated from an inherently nonparametric process. This paper introduces readers to nonlinear mixed-effects models and functional mixed-effects models. A simulation study is then presented where the mean and random effects structure of the simulated data were generated using B-splines. The accuracy of recovered curves was examined under various conditions including sample size, number of time points per curve, and measurement design. Results showed the functional mixed-effects models recovered the underlying mean curve more accurately than the nonlinear mixed-effects models. In general, the functional mixed-effects models recovered the underlying individual curves more accurately than the nonlinear mixed-effects models. Progesterone cycle data from Brumback and Rice (1998) were then analyzed to demonstrate the utility of both models. Both models were shown to perform similarly when analyzing the progesterone data. / Dissertation/Thesis / Doctoral Dissertation Psychology 2019
2

Bayesian Approach Dealing with Mixture Model Problems

Zhang, Huaiye 05 June 2012 (has links)
In this dissertation, we focus on two research topics related to mixture models. The first topic is Adaptive Rejection Metropolis Simulated Annealing for Detecting Global Maximum Regions, and the second topic is Bayesian Model Selection for Nonlinear Mixed Effects Model. In the first topic, we consider a finite mixture model, which is used to fit the data from heterogeneous populations for many applications. An Expectation Maximization (EM) algorithm and Markov Chain Monte Carlo (MCMC) are two popular methods to estimate parameters in a finite mixture model. However, both of the methods may converge to local maximum regions rather than the global maximum when multiple local maxima exist. In this dissertation, we propose a new approach, Adaptive Rejection Metropolis Simulated Annealing (ARMS annealing), to improve the EM algorithm and MCMC methods. Combining simulated annealing (SA) and adaptive rejection metropolis sampling (ARMS), ARMS annealing generate a set of proper starting points which help to reach all possible modes. ARMS uses a piecewise linear envelope function for a proposal distribution. Under the SA framework, we start with a set of proposal distributions, which are constructed by ARMS, and this method finds a set of proper starting points, which help to detect separate modes. We refer to this approach as ARMS annealing. By combining together ARMS annealing with the EM algorithm and with the Bayesian approach, respectively, we have proposed two approaches: an EM ARMS annealing algorithm and a Bayesian ARMS annealing approach. EM ARMS annealing implement the EM algorithm by using a set of starting points proposed by ARMS annealing. ARMS annealing also helps MCMC approaches determine starting points. Both approaches capture the global maximum region and estimate the parameters accurately. An illustrative example uses a survey data on the number of charitable donations. The second topic is related to the nonlinear mixed effects model (NLME). Typically a parametric NLME model requires strong assumptions which make the model less flexible and often are not satisfied in real applications. To allow the NLME model to have more flexible assumptions, we present three semiparametric Bayesian NLME models, constructed with Dirichlet process (DP) priors. Dirichlet process models often refer to an infinite mixture model. We propose a unified approach, the penalized posterior Bayes factor, for the purpose of model comparison. Using simulation studies, we compare the performance of two of the three semiparametric hierarchical Bayesian approaches with that of the parametric Bayesian approach. Simulation results suggest that our penalized posterior Bayes factor is a robust method for comparing hierarchical parametric and semiparametric models. An application to gastric emptying studies is used to demonstrate the advantage of our estimation and evaluation approaches. / Ph. D.
3

Statistical Modeling and Predictions Based on Field Data and Dynamic Covariates

Xu, Zhibing 12 December 2014 (has links)
Reliability analysis plays an important role in keeping manufacturers in a competitive position. It can be applied in many areas such as warranty predictions, maintenance scheduling, spare parts provisioning, and risk assessment. This dissertation focuses on statistical modeling and predictions based on lifetime data, degradation data, and recurrent event data. The datasets used in this dissertation come from the field, and have complicated structures. The dissertation consists of three main chapters, in addition to Chapter 1 which is the introduction chapter, and Chapter 5 which is the general conclusion chapter. Chapter 2 consists of the traditional time-to-failure data analysis. We propose a statistical method to address the failure data from an appliance used at home with the consideration of retirement times and delayed reporting time. We also develop a prediction method based on the proposed model. Using the information of retirement-time distribution and delayed reporting time, the predictions are more accurate and useful in the decision making. In Chapter 3, we introduce a nonlinear mixed-effects general path model to incorporate dynamic covariates into degradation data analysis. Dynamic covariates include time-varying environmental variables and usage condition. The shapes of the effect functions of covariates may be constrained to be, for example, monotonically increasing (i.e., higher temperature is likely to cause more damage). Incorporating dynamic covariates with shape restrictions is challenging. A modified alternative algorithm and the corresponding prediction method are proposed. In Chapter 4, we introduce a multi-level trend-renewal process (MTRP) model to describe component-level events in multi-level repairable systems. In particular, we consider two-level repairable systems in which events can occur at the subsystem level, or the component (within the subsystem) level. The main goal is to develop a method for estimation of model parameters and a procedure for prediction of the future replacement events at component level with the consideration of the effects from the subsystem replacement events. To explain unit-to-unit variability, time-dependent covariates as well as random effects are introduced into the heterogeneous MTRP model (HMTRP). A Metropolis-within-Gibbs algorithm is used to estimate the unknown parameters in the HMTRP model. The proposed method is illustrated by a simulated dataset. / Ph. D.

Page generated in 0.0863 seconds