• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 8
  • 5
  • Tagged with
  • 29
  • 29
  • 15
  • 11
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

GPS receiver self survey and attitude determination using pseudolite signals

Park, Keun Joo 15 November 2004 (has links)
This dissertation explores both the estimation of various parameters from a multiple antenna GPS receiver, which is used as an attitude sensor, and attitude determination using GPS-like Pseudolite signals. To use a multiple antenna GPS receiver as an attitude sensor, parameters such as baselines, integer ambiguities, line biases, and attitude, should be resolved beforehand. Also, due to a cycle slip problem a subsystem to correct this problem should be implemented. All of these tasks are called a self survey. A new algorithm to estimate these parameters from a GPS receiver is developed usingnonlinear batch filteringmethods.For convergence issues, both the nolinear least squares (NLS) and Levenberg-Marquardt (LM) methods are applied in the estimation.Acomparison ofthe NLSand LMmethods shows that the convergence of the LM method for the large initial errors is more robust than that of the NLS. In the proximity of the International Space Station (ISS), Pseudolite signals replace the GPSsignals since almostallsignals are blocked.Since the Pseudolite signals have spherical wavefronts, a new observation model should be applied. A nonlinear predictive filter, an extended Kalman filter (EKF), and an unscented filter (UF) are developed and compared using Pseudolite signals. A nonlinear predictive filter can provide a deterministic solution; however, it cannot be used for the moving case. Instead, the EKF or the UF can be used with the angular rate measurements. A comparison of EKF and UF shows that the convergence of the UF for the large initial errors is more robust than that of the EKF. Also, an alternative global navigation constellation is presented by using the Flower Constellation (FC) scheme. A comparison of FC global navigation constellation and other GPS constellations, U.S. GPS, Galileo, and GLONASS, shows that position and attitude errors of the FC constellation are smaller that those of the others.
12

Nonlinear orbit uncertainty prediction and rectification for space situational awareness

DeMars, Kyle Jordan 07 February 2011 (has links)
A new method for predicting the uncertainty in a nonlinear dynamical system is developed and analyzed in the context of uncertainty evolution for resident space objects (RSOs) in the near-geosynchronous orbit regime under the influence of central body gravitational acceleration, third body perturbations, and attitude-dependent solar radiation pressure (SRP) accelerations and torques. The new method, termed the splitting Gaussian mixture unscented Kalman filter (SGMUKF), exploits properties of the differential entropy or Renyi entropy for a linearized dynamical system to determine when a higher-order prediction of uncertainty reaches a level of disagreement with a first-order prediction, and then applies a multivariate Gaussian splitting algorithm to reduce the impact of induced nonlinearity. In order to address the relative accuracy of the new method with respect to the more traditional approaches of the extended Kalman filter (EKF) and unscented Kalman filter (UKF), several concepts regarding the comparison of probability density functions (pdfs) are introduced and utilized in the analysis. The research also describes high-fidelity modeling of the nonlinear dynamical system which drives the motion of an RSO, and includes models for evaluation of the central body gravitational acceleration, the gravitational acceleration due to other celestial bodies, and attitude-dependent SRP accelerations and torques when employing a macro plate model of an RSO. Furthermore, a high-fidelity model of the measurement of the line-of-sight of a spacecraft from a ground station is presented, which applies light-time and stellar aberration corrections, and accounts for observer and target lighting conditions, as well as for the sensor field of view. The developed algorithms are applied to the problem of forward predicting the time evolution of the region of uncertainty for RSO tracking, and uncertainty rectification via the fusion of incoming measurement data with prior knowledge. It is demonstrated that the SGMUKF method is significantly better able to forward predict the region of uncertainty and is subsequently better able to utilize new measurement data. / text
13

Nonlinear pose control and estimation for space proximity operations: an approach based on dual quaternions

Salgueiro Filipe, Nuno Ricardo 12 January 2015 (has links)
The term proximity operations has been widely used in recent years to describe a wide range of space missions that require a spacecraft to remain close to another space object. Such missions include, for example, the inspection, health monitoring, surveillance, servicing, and refueling of a space asset by another spacecraft. One of the biggest challenges in autonomous space proximity operations, either cooperative or uncooperative, is the need to autonomously and accurately track time-varying relative position and attitude references, i.e., pose references, with respect to a moving target, in order to avoid on-orbit collisions and achieve the overall mission goals. In addition, if the target spacecraft is uncooperative, the Guidance, Navigation, and Control (GNC) system of the chaser spacecraft must not rely on any help from the target spacecraft. In this case, vision-based sensors, such as cameras, are typically used to measure the relative pose between the spacecraft. Although vision-based sensors have several attractive properties, they introduce new challenges, such as no direct linear and angular velocity measurements, slow update rates, and high measurement noise. This dissertation investigates the problem of autonomously controlling and estimating the pose of a chaser spacecraft with respect to a moving target spacecraft, possibly uncooperative. Since this problem is inherently hard, the standard approach in the literature is to split the attitude-tracking problem from the position-tracking problem. Whereas the attitude-tracking problem is relatively simple, since the rotational motion is independent from the translational motion, the position-tracking problem is more complicated, as the translational motion depends on the rotational motion. Hence, whereas strong theoretical results exist for the attitude problem, the position problem typically requires additional assumptions. An alternative, more general approach to the pose control and estimation problems is to consider the fully coupled 6-DOF motion. However, fewer results exist that directly address this higher dimensional problem. The main contribution of this dissertation is to show that dual quaternions can be used to extend the theoretical results that exist for the attitude motion into analogous results for the combined position and attitude motion. Moreover, this dissertation shows that this can be accomplished by (almost) just replacing quaternions by dual quaternions in the original derivations. This is because dual quaternions are built on and are an extension of classical quaternions. Dual quaternions provide a compact representation of the pose of a frame with respect to another frame. Using this approach, three new results are presented in this dissertation. First, a pose-tracking controller that does not require relative linear and angular velocity measurements is derived with vision-based sensors in mind. Compared to existing literature, the proposed velocity-free pose-tracking controller guarantees that the pose of the chaser spacecraft will converge to the desired pose independently of the initial state, even if the reference motion is not sufficiently exciting. In addition, the convergence region does not depend on the gains of the controller. Second, a Dual Quaternion Multiplicative Extended Kalman Filter (DQ-MEKF) is developed from the highly successful Quaternion MEKF (Q-MEKF) as an alternative way to achieve pose-tracking without velocity measurements. Existing dual quaternion EKFs are additive, not multiplicative, and have two additional states. The DQ-MEKF is experimentally validated and compared with two conventional EKFs on the 5-DOF platform of the Autonomous Spacecraft Testing of Robotic Operations in Space (ASTROS) facility at the School of Aerospace Engineering at Georgia Tech. Finally, the velocity-free pose-tracking controller is compared qualitatively and quantitatively to a pose-tracking controller that uses the velocity estimates produced by the DQ-MEKF through a realistic proximity operations simulation. Third, a pose-tracking controller that does not require the mass and inertia matrix of the chaser satellite is suggested. This inertia-free controller takes into account the gravitational acceleration, the gravity-gradient torque, the perturbing acceleration due to Earth's oblateness, and constant -- but otherwise unknown -- disturbance forces and torques. Sufficient conditions on the reference pose are also given that guarantee the identification of the mass and inertia matrix of the satellite. Compared to the existing literature, this controller has only as many states as unknown elements and it does not require a priori known upper bounds on any states or parameters. Finally, the inertia-free pose-tracking controller and the DQ-MEKF are tested on a high-fidelity simulation of the 5-DOF platform of the ASTROS facility and also experimentally validated on the actual platform. The equations of motion of the 5-DOF platform, on which the high-fidelity simulation is based, are derived for three distinct cases: a 3-DOF case, a 5-DOF case, and a (2+1)-DOF case. Four real-time experiments were run on the platform. In the first, a sinusoidal reference attitude with respect to the inertial frame is tracked using VSCMGs. In the second, a constant reference attitude is maintained with respect to a target object using VSCMGs and measurements from a camera. In the third, the same sinusoidal reference attitude with respect to the inertial frame tracked in the first experiment is now tracked using cold-gas thrusters. Finally, in the fourth and last experiment, a time-varying 5-DOF reference pose with respect to the inertial frame is tracked using cold-gas thrusters.
14

Abordagem sistemática para construção e sintonia de estimadores de estados não-lineares

Salau, Nina Paula Gonçalves January 2009 (has links)
Este trabalho apresenta metodologias para a construção e a sintonia de estimadores de estados não-lineares visando aplicações práticas. O funcionamento de um estimador de estados não-linear está calcado em quatro etapas básicas: (a) sintonia; (b) predição; (c) atualização da matriz de covariância de estados; (d) filtragem e suavização dos estados. As principais contribuições deste trabalho para cada uma destas etapas podem ser resumidas como segue: (a) Sintonia. A sintonia adequada da matriz de covariância do ruído de processos é fundamental na aplicação dos estimadores de estado com modelos sujeitos a incertezas paramétricas e estruturais. Sendo assim, foi proposto um novo algoritmo para a sintonia desta matriz que considera dois novos métodos para a determinação da matriz de covariância dos parâmetros. Este algoritmo melhorou significativamente a precisão da estimação dos estados na presença dessas incertezas, com potencialidade para ser usado na atualização de modelos em linha em práticas industriais. (b) Predição. Uma das etapas mais importantes para a aplicação do estimador de estados é a formulação dos modelos usados. Desta forma, foi mostrado como a formulação do modelo a ser usada em um estimador de estados pode impactar na observabilidade do sistema e na sintonia das matrizes de covariância. Também são apresentadas as principais recomendações para formular um bom modelo. (c) Atualização da matriz de covariância dos estados. A robustez numérica das matrizes de covariância dos estados usadas em estimadores de estados sem e com restrições é ilustrada através de dois exemplos da engenharia química que apresentam multiplicidade de soluções. Mostrou-se que a melhor forma de atualizar os estados consiste na resolução de um problema de otimização sujeito a restrições onde as estimativas fisicamente inviáveis dos estados são evitadas. Este também preserva a gaussianidade dos ruídos evitando que estes sejam mal distribuídos. (d) Filtragem e suavização dos estados. Entre as formulações estudadas, observou-se também que a melhor relação entre a acuracidade das estimativas e a viabilidade de aplicação prática é obtida com a formulação do filtro de Kalman estendido sujeita a restrições (denominada Constrained Extended Kalman Filter - CEKF), uma vez que esta demanda menor esforço computacional que a estimação de horizonte móvel, apresentando um desempenho comparável exceto no caso de estimativas ruins da condição inicial dos estados. Como uma solução alternativa eficiente para a estimação de horizonte móvel neste último caso, foi proposto um novo estimador baseado na inclusão de uma estratégia de suavização na formulação do CEKF, referenciado como CEKF & Smoother (CEKF&S). / This work presents approaches to building and tuning nonlinear state estimators aiming practical applications. The implementation of a nonlinear state estimator is supported by four basic steps: (a) tuning; (b) forecast; (c) state covariance matrix update; (d) states filtering and smoothing. The main contributions of this work for each one of these stages can be summarized as follows: (a) Tuning. An appropriate choice of the process-noise covariance matrix is crucial in applying state estimators with models subjected to parametric and structural uncertainties. Thus, a new process-noise covariance matrix tuning algorithm is presented in this work which incorporates two new methods for the parameter covariance matrix computation. The algorithm has improved significantly the state estimation accuracy when the presence of such uncertainties, with potential to be applied in on-line model update in industrial practice. (b) Forecast. One of the most important stages in applying state estimators is the used model formulation. In this way, it has been shown that the model formulation to be used in state estimator can impact on the system observability and noisecovariance matrices tuning. In this work it is also presented the main recommendations to formulate an appropriated model. (c) State covariance matrix update. The numerical robustness of the state covariance matrices used in unconstrained and constrained state estimators is illustrated by two chemical engineering examples tending to multiple solutions. It has been shown that the best technique to update the states consists in solving an optimization problem subjected to constraints, since it prevents from physically unfeasible states. It also preserves the noise gaussianity preventing from bad noise distribution. (d) States filtering and smoothing. Among the studied formulations, it was also noticed that the better relationship between performance and practical application is obtained with an extended Kalman filter formulation subjected to constraints (called Constrained Extended Kalman Filter - CEKF) because it requires small computational effort than MHE with comparable performance, except in case of poor guesses of the initial state. As an efficient solution for moving horizon estimation in the last case, it was proposed a new estimator based on the addition of a smoother strategy into the CEKF formulation, referred as CEKF & Smoother (CEKF&S).
15

Abordagem sistemática para construção e sintonia de estimadores de estados não-lineares

Salau, Nina Paula Gonçalves January 2009 (has links)
Este trabalho apresenta metodologias para a construção e a sintonia de estimadores de estados não-lineares visando aplicações práticas. O funcionamento de um estimador de estados não-linear está calcado em quatro etapas básicas: (a) sintonia; (b) predição; (c) atualização da matriz de covariância de estados; (d) filtragem e suavização dos estados. As principais contribuições deste trabalho para cada uma destas etapas podem ser resumidas como segue: (a) Sintonia. A sintonia adequada da matriz de covariância do ruído de processos é fundamental na aplicação dos estimadores de estado com modelos sujeitos a incertezas paramétricas e estruturais. Sendo assim, foi proposto um novo algoritmo para a sintonia desta matriz que considera dois novos métodos para a determinação da matriz de covariância dos parâmetros. Este algoritmo melhorou significativamente a precisão da estimação dos estados na presença dessas incertezas, com potencialidade para ser usado na atualização de modelos em linha em práticas industriais. (b) Predição. Uma das etapas mais importantes para a aplicação do estimador de estados é a formulação dos modelos usados. Desta forma, foi mostrado como a formulação do modelo a ser usada em um estimador de estados pode impactar na observabilidade do sistema e na sintonia das matrizes de covariância. Também são apresentadas as principais recomendações para formular um bom modelo. (c) Atualização da matriz de covariância dos estados. A robustez numérica das matrizes de covariância dos estados usadas em estimadores de estados sem e com restrições é ilustrada através de dois exemplos da engenharia química que apresentam multiplicidade de soluções. Mostrou-se que a melhor forma de atualizar os estados consiste na resolução de um problema de otimização sujeito a restrições onde as estimativas fisicamente inviáveis dos estados são evitadas. Este também preserva a gaussianidade dos ruídos evitando que estes sejam mal distribuídos. (d) Filtragem e suavização dos estados. Entre as formulações estudadas, observou-se também que a melhor relação entre a acuracidade das estimativas e a viabilidade de aplicação prática é obtida com a formulação do filtro de Kalman estendido sujeita a restrições (denominada Constrained Extended Kalman Filter - CEKF), uma vez que esta demanda menor esforço computacional que a estimação de horizonte móvel, apresentando um desempenho comparável exceto no caso de estimativas ruins da condição inicial dos estados. Como uma solução alternativa eficiente para a estimação de horizonte móvel neste último caso, foi proposto um novo estimador baseado na inclusão de uma estratégia de suavização na formulação do CEKF, referenciado como CEKF & Smoother (CEKF&S). / This work presents approaches to building and tuning nonlinear state estimators aiming practical applications. The implementation of a nonlinear state estimator is supported by four basic steps: (a) tuning; (b) forecast; (c) state covariance matrix update; (d) states filtering and smoothing. The main contributions of this work for each one of these stages can be summarized as follows: (a) Tuning. An appropriate choice of the process-noise covariance matrix is crucial in applying state estimators with models subjected to parametric and structural uncertainties. Thus, a new process-noise covariance matrix tuning algorithm is presented in this work which incorporates two new methods for the parameter covariance matrix computation. The algorithm has improved significantly the state estimation accuracy when the presence of such uncertainties, with potential to be applied in on-line model update in industrial practice. (b) Forecast. One of the most important stages in applying state estimators is the used model formulation. In this way, it has been shown that the model formulation to be used in state estimator can impact on the system observability and noisecovariance matrices tuning. In this work it is also presented the main recommendations to formulate an appropriated model. (c) State covariance matrix update. The numerical robustness of the state covariance matrices used in unconstrained and constrained state estimators is illustrated by two chemical engineering examples tending to multiple solutions. It has been shown that the best technique to update the states consists in solving an optimization problem subjected to constraints, since it prevents from physically unfeasible states. It also preserves the noise gaussianity preventing from bad noise distribution. (d) States filtering and smoothing. Among the studied formulations, it was also noticed that the better relationship between performance and practical application is obtained with an extended Kalman filter formulation subjected to constraints (called Constrained Extended Kalman Filter - CEKF) because it requires small computational effort than MHE with comparable performance, except in case of poor guesses of the initial state. As an efficient solution for moving horizon estimation in the last case, it was proposed a new estimator based on the addition of a smoother strategy into the CEKF formulation, referred as CEKF & Smoother (CEKF&S).
16

Abordagem sistemática para construção e sintonia de estimadores de estados não-lineares

Salau, Nina Paula Gonçalves January 2009 (has links)
Este trabalho apresenta metodologias para a construção e a sintonia de estimadores de estados não-lineares visando aplicações práticas. O funcionamento de um estimador de estados não-linear está calcado em quatro etapas básicas: (a) sintonia; (b) predição; (c) atualização da matriz de covariância de estados; (d) filtragem e suavização dos estados. As principais contribuições deste trabalho para cada uma destas etapas podem ser resumidas como segue: (a) Sintonia. A sintonia adequada da matriz de covariância do ruído de processos é fundamental na aplicação dos estimadores de estado com modelos sujeitos a incertezas paramétricas e estruturais. Sendo assim, foi proposto um novo algoritmo para a sintonia desta matriz que considera dois novos métodos para a determinação da matriz de covariância dos parâmetros. Este algoritmo melhorou significativamente a precisão da estimação dos estados na presença dessas incertezas, com potencialidade para ser usado na atualização de modelos em linha em práticas industriais. (b) Predição. Uma das etapas mais importantes para a aplicação do estimador de estados é a formulação dos modelos usados. Desta forma, foi mostrado como a formulação do modelo a ser usada em um estimador de estados pode impactar na observabilidade do sistema e na sintonia das matrizes de covariância. Também são apresentadas as principais recomendações para formular um bom modelo. (c) Atualização da matriz de covariância dos estados. A robustez numérica das matrizes de covariância dos estados usadas em estimadores de estados sem e com restrições é ilustrada através de dois exemplos da engenharia química que apresentam multiplicidade de soluções. Mostrou-se que a melhor forma de atualizar os estados consiste na resolução de um problema de otimização sujeito a restrições onde as estimativas fisicamente inviáveis dos estados são evitadas. Este também preserva a gaussianidade dos ruídos evitando que estes sejam mal distribuídos. (d) Filtragem e suavização dos estados. Entre as formulações estudadas, observou-se também que a melhor relação entre a acuracidade das estimativas e a viabilidade de aplicação prática é obtida com a formulação do filtro de Kalman estendido sujeita a restrições (denominada Constrained Extended Kalman Filter - CEKF), uma vez que esta demanda menor esforço computacional que a estimação de horizonte móvel, apresentando um desempenho comparável exceto no caso de estimativas ruins da condição inicial dos estados. Como uma solução alternativa eficiente para a estimação de horizonte móvel neste último caso, foi proposto um novo estimador baseado na inclusão de uma estratégia de suavização na formulação do CEKF, referenciado como CEKF & Smoother (CEKF&S). / This work presents approaches to building and tuning nonlinear state estimators aiming practical applications. The implementation of a nonlinear state estimator is supported by four basic steps: (a) tuning; (b) forecast; (c) state covariance matrix update; (d) states filtering and smoothing. The main contributions of this work for each one of these stages can be summarized as follows: (a) Tuning. An appropriate choice of the process-noise covariance matrix is crucial in applying state estimators with models subjected to parametric and structural uncertainties. Thus, a new process-noise covariance matrix tuning algorithm is presented in this work which incorporates two new methods for the parameter covariance matrix computation. The algorithm has improved significantly the state estimation accuracy when the presence of such uncertainties, with potential to be applied in on-line model update in industrial practice. (b) Forecast. One of the most important stages in applying state estimators is the used model formulation. In this way, it has been shown that the model formulation to be used in state estimator can impact on the system observability and noisecovariance matrices tuning. In this work it is also presented the main recommendations to formulate an appropriated model. (c) State covariance matrix update. The numerical robustness of the state covariance matrices used in unconstrained and constrained state estimators is illustrated by two chemical engineering examples tending to multiple solutions. It has been shown that the best technique to update the states consists in solving an optimization problem subjected to constraints, since it prevents from physically unfeasible states. It also preserves the noise gaussianity preventing from bad noise distribution. (d) States filtering and smoothing. Among the studied formulations, it was also noticed that the better relationship between performance and practical application is obtained with an extended Kalman filter formulation subjected to constraints (called Constrained Extended Kalman Filter - CEKF) because it requires small computational effort than MHE with comparable performance, except in case of poor guesses of the initial state. As an efficient solution for moving horizon estimation in the last case, it was proposed a new estimator based on the addition of a smoother strategy into the CEKF formulation, referred as CEKF & Smoother (CEKF&S).
17

Nonlinearities in exchange rate: evidence from smooth transition regression model

Korhonen, M. (Marko) 28 November 2005 (has links)
Abstract The purchasing power parity puzzle, exchange rate disconnection to macroeconomic fundamentals and pricing to market are central issues of international macroeconomics. Recent research has suggested that these issues can be presented by nonlinear behaviour. In this dissertation, we examine and explain the nonlinearities in the form of regime switching behaviour in real exchange rate series, exchange rate and macroeconomic fundamentals relation and exchange rate pass-through into consumer and import prices. Overall, we find evidence that nonlinearities are important in analysing empirical exchange rate models. The dissertation consists of four self-contained empirical studies. In chapter 2 we examine whether the Markov switching models and exponential smooth transition autoregressive models can give any additional insights into real exchange rate behaviour for several OECD countries. The results show that there are long swings in the real exchange rate series, which can be characterize as a depreciation and an appreciation regime. These regimes are very persistent, although the processes are eventually mean reverting. We estimate a multivariate smooth transition autoregressive model for the euro/dollar exchange rate in chapter 3. The significant point of our analysis is the possibility that a nonlinear specification for the exchange rate series might reveal aspects of the exchange rate dynamics that cannot be picked up by linear models. We find that the euro/dollar exchange rate may display random walk or near random walk behaviour within a certain range but the ability of the exchange rate to wander without any bound is limited by long-term government bond interest rate differentials. In chapter 4 we examine nonlinear relationships between macroeconomic fundamentals and exchange rate for G-7 countries. We estimate a smooth transition error correction model that allows for parameter variation in the error correction form and interest rate differentials. The nonlinearity is determined by the inflation rate differentials between countries. We find significant error correction terms in monetary models. Our findings suggest the importance of nonlinear dynamics for examining deviations from the long-run equilibrium. We examine whether the degree of exchange rate pass-through is dependent on importing country inflation rate in chapter 5. Our model shows that import prices respond differently to exchange rate changes when we are in a high inflation regime compared to a low inflation regime. We also present empirical evidence by estimating pass-through elasticises for several OECD countries. We find that consumer prices are not very sensitive to exchange rate changes. For aggregate import prices, we find partial or full exchange rate pass-throughs. The tested nonlinear regime specific models proved appropriate for testing exchange rate dynamics for several currency pairs. Furthermore, we were able to present that macroeconomic fundamentals are important predictors of exchange rates.
18

Robust Nonlinear Estimation and Control of Clutch-to-Clutch Shifts

Mishra, Kirti D. 08 June 2016 (has links)
No description available.
19

Estimation of Nonlinear Dynamic Systems : Theory and Applications

Schön, Thomas B. January 2006 (has links)
This thesis deals with estimation of states and parameters in nonlinear and non-Gaussian dynamic systems. Sequential Monte Carlo methods are mainly used to this end. These methods rely on models of the underlying system, motivating some developments of the model concept. One of the main reasons for the interest in nonlinear estimation is that problems of this kind arise naturally in many important applications. Several applications of nonlinear estimation are studied. The models most commonly used for estimation are based on stochastic difference equations, referred to as state-space models. This thesis is mainly concerned with models of this kind. However, there will be a brief digression from this, in the treatment of the mathematically more intricate differential-algebraic equations. Here, the purpose is to write these equations in a form suitable for statistical signal processing. The nonlinear state estimation problem is addressed using sequential Monte Carlo methods, commonly referred to as particle methods. When there is a linear sub-structure inherent in the underlying model, this can be exploited by the powerful combination of the particle filter and the Kalman filter, presented by the marginalized particle filter. This algorithm is also known as the Rao-Blackwellized particle filter and it is thoroughly derived and explained in conjunction with a rather general class of mixed linear/nonlinear state-space models. Models of this type are often used in studying positioning and target tracking applications. This is illustrated using several examples from the automotive and the aircraft industry. Furthermore, the computational complexity of the marginalized particle filter is analyzed. The parameter estimation problem is addressed for a relatively general class of mixed linear/nonlinear state-space models. The expectation maximization algorithm is used to calculate parameter estimates from batch data. In devising this algorithm, the need to solve a nonlinear smoothing problem arises, which is handled using a particle smoother. The use of the marginalized particle filter for recursive parameterestimation is also investigated. The applications considered are the camera positioning problem arising from augmented reality and sensor fusion problems originating from automotive active safety systems. The use of vision measurements in the estimation problem is central to both applications. In augmented reality, the estimates of the camera’s position and orientation are imperative in the process of overlaying computer generated objects onto the live video stream. The objective in the sensor fusion problems arising in automotive safety systems is to provide information about the host vehicle and its surroundings, such as the position of other vehicles and the road geometry. Information of this kind is crucial for many systems, such as adaptive cruise control, collision avoidance and lane guidance.
20

New Algorithms for Uncertainty Quantification and Nonlinear Estimation of Stochastic Dynamical Systems

Dutta, Parikshit 2011 August 1900 (has links)
Recently there has been growing interest to characterize and reduce uncertainty in stochastic dynamical systems. This drive arises out of need to manage uncertainty in complex, high dimensional physical systems. Traditional techniques of uncertainty quantification (UQ) use local linearization of dynamics and assumes Gaussian probability evolution. But several difficulties arise when these UQ models are applied to real world problems, which, generally are nonlinear in nature. Hence, to improve performance, robust algorithms, which can work efficiently in a nonlinear non-Gaussian setting are desired. The main focus of this dissertation is to develop UQ algorithms for nonlinear systems, where uncertainty evolves in a non-Gaussian manner. The algorithms developed are then applied to state estimation of real-world systems. The first part of the dissertation focuses on using polynomial chaos (PC) for uncertainty propagation, and then achieving the estimation task by the use of higher order moment updates and Bayes rule. The second part mainly deals with Frobenius-Perron (FP) operator theory, how it can be used to propagate uncertainty in dynamical systems, and then using it to estimate states by the use of Bayesian update. Finally, a method to represent the process noise in a stochastic dynamical system using a nite term Karhunen-Loeve (KL) expansion is proposed. The uncertainty in the resulting approximated system is propagated using FP operator. The performance of the PC based estimation algorithms were compared with extended Kalman filter (EKF) and unscented Kalman filter (UKF), and the FP operator based techniques were compared with particle filters, when applied to a duffing oscillator system and hypersonic reentry of a vehicle in the atmosphere of Mars. It was found that the accuracy of the PC based estimators is higher than EKF or UKF and the FP operator based estimators were computationally superior to the particle filtering algorithms.

Page generated in 0.5122 seconds