• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A SYSTEMATIC STUDY OF SPARSE DEEP LEARNING WITH DIFFERENT PENALTIES

Xinlin Tao (13143465) 25 April 2023 (has links)
<p>Deep learning has been the driving force behind many successful data science achievements. However, the deep neural network (DNN) that forms the basis of deep learning is</p> <p>often over-parameterized, leading to training, prediction, and interpretation challenges. To</p> <p>address this issue, it is common practice to apply an appropriate penalty to each connection</p> <p>weight, limiting its magnitude. This approach is equivalent to imposing a prior distribution</p> <p>on each connection weight from a Bayesian perspective. This project offers a systematic investigation into the selection of the penalty function or prior distribution. Specifically, under</p> <p>the general theoretical framework of posterior consistency, we prove that consistent sparse</p> <p>deep learning can be achieved with a variety of penalty functions or prior distributions.</p> <p>Examples include amenable regularization penalties (such as MCP and SCAD), spike-and?slab priors (such as mixture Gaussian distribution and mixture Laplace distribution), and</p> <p>polynomial decayed priors (such as the student-t distribution). Our theory is supported by</p> <p>numerical results.</p> <p><br></p>

Page generated in 0.0903 seconds