• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanoscale engineering of semiconductor heterostructures for quadratic nonlinear optics and multiphoton imaging / Ingénierie à l’échelle nanométrique d’hétérostructures à base de semiconducteurs pour l’optique non-linéaire quadratique et l’imagerie multiphotonique

Zieliński, Marcin 09 February 2011 (has links)
Les phénomènes de diffusion cohérente non-linéaire ont été récemment proposés en alternatives à la fluorescence comme processus de marquage en microscopie multiphotonique. Les matériaux couramment appliqués dans ce contexte buttent toutefois sur une limite inférieure en taille déterminée par le seuil de détection de signaux faibles en optique non-linéaire. Aucun des efforts récents en détection en génération de second-harmonique (GSH), qui est le processus non-linéaire d’ordre le plus bas, n’a permis de descendre à ce jour au-dessous d’une barrière en taille de 40nm même en ayant recours aux techniques de détection les plus sensibles telles que le comptage de photons uniques. Les nanoparticules (NPs) restent ainsi dans la famille des nano-diffuseurs de “grande“ taille. Il apparaît toutefois possible de déplacer de façon significative cette limite inférieure vers les plus petites tailles en substituant aux isolants diélectriques ou aux semi-conducteurs à grands gaps des particules quantiques (PQs) à base de semi-conducteurs à gaps directs.Dans ce travail, un nouveau type de nanosondes hautement non-linéaires a été conçu et développé de façon à franchir cette barrière de taille minimale pour atteindre l’échelle de nanoparticules uniques. Nous considérons ainsi l’excitation résonnante à deux photons de nanoparticules quantiques individuelles à base de CdTe (de la famille des “zinc-blendes”) d’un diamètre d’environ 12.5nm, qui fournissent une émission cohérente efficace par GSH jusqu’à hauteur de 105 comptages de photons par seconde. Elles présentent de plus l’avantage d’une remarquable sensibilité à l’orientation de leur réseau cristallin octupolaire.De plus, il a été démontré que les effets de confinement quantique déterminent fortement les caractéristiques de la susceptibilité non-linéaire du second-ordre χ(2). La caractérisation quantitative du χ(2) des PQs, en particulier leur dispersion spectrale et leur dépendance en taille est menée par spectroscopie de particules uniques ainsi qu’en moyenne d’ensemble par diffusion Hyper-Rayleigh (HRS). Nous fournissons en particulier la preuve que sous certaines conditions, le χ(2) de structures à base de semi-conducteurs en mode de confinement quantique peut très largement dépasser sa valeur en milieu massif. De plus, un nouveau type de PQs hybridant des semi-conducteurs en géométries de type “bâtonnet sur sphère” (BS) a été développé sur la base de composantes cristallines de symétries différentes, afin d’augmenter leur non-linéarité quadratique effective, tout en maintenant leur taille dans un régime proche d’un fort confinement quantique. Le nouveau tenseur hybride complexe χ(2) est analysé en terme d’interférence des susceptibilités constitutives, en prenant en compte les différentes formes et symétries associées aux composantes octupolaires et dipolaires.Il en résulte pour de telles structures une exaltation significative du χ(2), qui excède celle des PQs à constituant unique compte tenu du couplage entre matériaux non-linéaires et d’un temps de décohérence plus long, que nous attribuons à un effet de separation de charge photo-induit. / Nonlinear coherent scattering phenomena from single nanoparticles have been recently proposed as alternative processes for fluorescence in multiphoton microscopy staining. Commonly applied nanoscale materials, however, have reached a certain limit in size dependent detection efficiency of weak nonlinear optical signals. None of the recent efforts in detection of second-harmonic generation (SHG), the lowest order nonlinear process, have been able to cross a ~40 nm size barrier for nanoparticles (NPs), thus remaining at the level of “large” nanoscatterers, even when resorting to the most sensitive detection techniques such as single-photon counting technology. As we realize now, this size limitation can be significantly lowered when replacing dielectric insulators or wide gap semiconductors by direct-gap semiconducting quantum dots (QDs). Herein, a new type of highly nonlinear nanoprobes is engineered in order to surpass above mentioned size barrier at the single nanoparticle scale. We consider two-photon resonant excitation in individual zinc-blende CdTe QDs of about 12.5 nm diameter, which provide efficient coherent SHG radiation, as high as 105 Hz, furthermore exhibiting remarkable sensitivity to spatial orientation of their octupolar crystalline lattice. Moreover, quantum confinement effects have been found to strongly contribute to the second-order nonlinear optical susceptibility χ(2) features. Quantitative characterization of the χ(2) of QDs by way of their spectral dispersion and size dependence is therefore undertaken by single particle spectroscopy and ensemble Hyper-Rayleigh Scattering (HRS) studies. We prove that under appropriate conditions, χ(2) of quantum confined semiconducting structures can significantly exceed that of bulk. Furthermore, a novel type of semiconducting hybrid rod-on-dot (RD) QDs is developed by building up on crystalline moieties of different symmetries, in order to increase their effective quadratic nonlinearity while maintaining their size close to a strong quantum confinement regime. The new complex hybrid χ(2) tensor is analyzed by interfering the susceptibilities from each component, considering different shape and point group symmetries associated to octupolar and dipolar crystalline structures. Significant SHG enhancement is consequently observed, exceeding that of mono-compound QDs, due to a coupling between two nonlinear materials and slower decoherence, which we attribute to the induced spatial charge separation upon photoexcitation.
2

Nanoscale engineering of semiconductor heterostructures for quadratic nonlinear optics and multiphoton imaging

Zieliński, Marcin 09 February 2011 (has links) (PDF)
Nonlinear coherent scattering phenomena from single nanoparticles have been recently proposed as alternative processes for fluorescence in multiphoton microscopy staining. Commonly applied nanoscale materials, however, have reached a certain limit in size dependent detection efficiency of weak nonlinear optical signals. None of the recent efforts in detection of second-harmonic generation (SHG), the lowest order nonlinear process, have been able to cross a ~40 nm size barrier for nanoparticles (NPs), thus remaining at the level of "large" nanoscatterers, even when resorting to the most sensitive detection techniques such as single-photon counting technology. As we realize now, this size limitation can be significantly lowered when replacing dielectric insulators or wide gap semiconductors by direct-gap semiconducting quantum dots (QDs). Herein, a new type of highly nonlinear nanoprobes is engineered in order to surpass above mentioned size barrier at the single nanoparticle scale. We consider two-photon resonant excitation in individual zinc-blende CdTe QDs of about 12.5 nm diameter, which provide efficient coherent SHG radiation, as high as 105 Hz, furthermore exhibiting remarkable sensitivity to spatial orientation of their octupolar crystalline lattice. Moreover, quantum confinement effects have been found to strongly contribute to the second-order nonlinear optical susceptibility χ(2) features. Quantitative characterization of the χ(2) of QDs by way of their spectral dispersion and size dependence is therefore undertaken by single particle spectroscopy and ensemble Hyper-Rayleigh Scattering (HRS) studies. We prove that under appropriate conditions, χ(2) of quantum confined semiconducting structures can significantly exceed that of bulk. Furthermore, a novel type of semiconducting hybrid rod-on-dot (RD) QDs is developed by building up on crystalline moieties of different symmetries, in order to increase their effective quadratic nonlinearity while maintaining their size close to a strong quantum confinement regime. The new complex hybrid χ(2) tensor is analyzed by interfering the susceptibilities from each component, considering different shape and point group symmetries associated to octupolar and dipolar crystalline structures. Significant SHG enhancement is consequently observed, exceeding that of mono-compound QDs, due to a coupling between two nonlinear materials and slower decoherence, which we attribute to the induced spatial charge separation upon photoexcitation.

Page generated in 0.0741 seconds