• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developments in statistics applied to hydrometeorology : imputation of streamflow data and semiparametric precipitation modeling / Développements en statistiques appliquées à l'hydrométéorologie : imputation de données de débit et modélisation semi-paramétrique de la précipitation

Tencaliec, Patricia 01 February 2017 (has links)
Les précipitations et les débits des cours d'eau constituent les deux variables hydrométéorologiques les plus importantes pour l'analyse des bassins versants. Ils fournissent des informations fondamentales pour la gestion intégrée des ressources en eau, telles que l’approvisionnement en eau potable, l'hydroélectricité, les prévisions d'inondations ou de sécheresses ou les systèmes d'irrigation.Dans cette thèse de doctorat sont abordés deux problèmes distincts. Le premier prend sa source dans l’étude des débits des cours d’eau. Dans le but de bien caractériser le comportement global d'un bassin versant, de longues séries temporelles de débit couvrant plusieurs dizaines d'années sont nécessaires. Cependant les données manquantes constatées dans les séries représentent une perte d'information et de fiabilité, et peuvent entraîner une interprétation erronée des caractéristiques statistiques des données. La méthode que nous proposons pour aborder le problème de l'imputation des débits se base sur des modèles de régression dynamique (DRM), plus spécifiquement, une régression linéaire multiple couplée à une modélisation des résidus de type ARIMA. Contrairement aux études antérieures portant sur l'inclusion de variables explicatives multiples ou la modélisation des résidus à partir d'une régression linéaire simple, l'utilisation des DRMs permet de prendre en compte les deux aspects. Nous appliquons cette méthode pour reconstruire les données journalières de débit à huit stations situées dans le bassin versant de la Durance (France), sur une période de 107 ans. En appliquant la méthode proposée, nous parvenons à reconstituer les débits sans utiliser d'autres variables explicatives. Nous comparons les résultats de notre modèle avec ceux obtenus à partir d'un modèle complexe basé sur les analogues et la modélisation hydrologique et d'une approche basée sur le plus proche voisin. Dans la majorité des cas, les DRMs montrent une meilleure performance lors de la reconstitution de périodes de données manquantes de tailles différentes, dans certains cas pouvant allant jusqu'à 20 ans.Le deuxième problème que nous considérons dans cette thèse concerne la modélisation statistique des quantités de précipitations. La recherche dans ce domaine est actuellement très active car la distribution des précipitations exhibe une queue supérieure lourde et, au début de cette thèse, il n'existait aucune méthode satisfaisante permettant de modéliser toute la gamme des précipitations. Récemment, une nouvelle classe de distribution paramétrique, appelée distribution généralisée de Pareto étendue (EGPD), a été développée dans ce but. Cette distribution exhibe une meilleure performance, mais elle manque de flexibilité pour modéliser la partie centrale de la distribution. Dans le but d’améliorer la flexibilité, nous développons, deux nouveaux modèles reposant sur des méthodes semiparamétriques.Le premier estimateur développé transforme d'abord les données avec la distribution cumulative EGPD puis estime la densité des données transformées en appliquant un estimateur nonparamétrique par noyau. Nous comparons les résultats de la méthode proposée avec ceux obtenus en appliquant la distribution EGPD paramétrique sur plusieurs simulations, ainsi que sur deux séries de précipitations au sud-est de la France. Les résultats montrent que la méthode proposée se comporte mieux que l'EGPD, l’erreur absolue moyenne intégrée (MIAE) de la densité étant dans tous les cas presque deux fois inférieure.Le deuxième modèle considère une distribution EGPD semiparamétrique basée sur les polynômes de Bernstein. Plus précisément, nous utilisons un mélange creuse de densités béta. De même, nous comparons nos résultats avec ceux obtenus par la distribution EGPD paramétrique sur des jeux de données simulés et réels. Comme précédemment, le MIAE de la densité est considérablement réduit, cet effet étant encore plus évident à mesure que la taille de l'échantillon augmente. / Precipitation and streamflow are the two most important meteorological and hydrological variables when analyzing river watersheds. They provide fundamental insights for water resources management, design, or planning, such as urban water supplies, hydropower, forecast of flood or droughts events, or irrigation systems for agriculture.In this PhD thesis we approach two different problems. The first one originates from the study of observed streamflow data. In order to properly characterize the overall behavior of a watershed, long datasets spanning tens of years are needed. However, the quality of the measurement dataset decreases the further we go back in time, and blocks of data of different lengths are missing from the dataset. These missing intervals represent a loss of information and can cause erroneous summary data interpretation or unreliable scientific analysis.The method that we propose for approaching the problem of streamflow imputation is based on dynamic regression models (DRMs), more specifically, a multiple linear regression with ARIMA residual modeling. Unlike previous studies that address either the inclusion of multiple explanatory variables or the modeling of the residuals from a simple linear regression, the use of DRMs allows to take into account both aspects. We apply this method for reconstructing the data of eight stations situated in the Durance watershed in the south-east of France, each containing daily streamflow measurements over a period of 107 years. By applying the proposed method, we manage to reconstruct the data without making use of additional variables, like other models require. We compare the results of our model with the ones obtained from a complex approach based on analogs coupled to a hydrological model and a nearest-neighbor approach, respectively. In the majority of cases, DRMs show an increased performance when reconstructing missing values blocks of various lengths, in some of the cases ranging up to 20 years.The second problem that we approach in this PhD thesis addresses the statistical modeling of precipitation amounts. The research area regarding this topic is currently very active as the distribution of precipitation is a heavy-tailed one, and at the moment, there is no general method for modeling the entire range of data with high performance. Recently, in order to propose a method that models the full-range precipitation amounts, a new class of distribution called extended generalized Pareto distribution (EGPD) was introduced, specifically with focus on the EGPD models based on parametric families. These models provide an improved performance when compared to previously proposed distributions, however, they lack flexibility in modeling the bulk of the distribution. We want to improve, through, this aspect by proposing in the second part of the thesis, two new models relying on semiparametric methods.The first method that we develop is the transformed kernel estimator based on the EGPD transformation. That is, we propose an estimator obtained by, first, transforming the data with the EGPD cdf, and then, estimating the density of the transformed data by applying a nonparametric kernel density estimator. We compare the results of the proposed method with the ones obtained by applying EGPD on several simulated scenarios, as well as on two precipitation datasets from south-east of France. The results show that the proposed method behaves better than parametric EGPD, the MIAE of the density being in all the cases almost twice as small.A second approach consists of a new model from the general EGPD class, i.e., we consider a semiparametric EGPD based on Bernstein polynomials, more specifically, we use a sparse mixture of beta densities. Once again, we compare our results with the ones obtained by EGPD on both simulated and real datasets. As before, the MIAE of the density is considerably reduced, this effect being even more obvious as the sample size increases.

Page generated in 0.1194 seconds