• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Defining the Role of Rubella Virus Nonstructural Proteins in Replication Complex Assembly and Fiber Formation

Matthews, Jason D 30 March 2010 (has links)
Rubella virus (RUBV) is a positive-strand RNA virus and the causative agent of rubella and congenital rubella syndrome in humans. To replicate its RNA, RUBV forms membrane-associated spherules, called replication complexes (RCs), the induction of which requires the two virus nonstructural proteins (NSPs), P150 and P90. Interestingly, late in infection the NSPs form a unique cytoplasmic fiber network, similar in appearance to microtubules, the function of which is unknown. Little is known about the roles of the RUBV NSPs in forming these structures and, to this end, we scrutinized the behavior and biochemical properties of the NSPs, both after expression from plasmids and during RUBV infection, using mutagenic, biochemical and pharmacological approaches. The following findings were made: First, the precursor from which P150 and P90 are produced via an embedded protease at the C-terminus of P150, called P200, was required for initial targeting to cytoplasmic foci. P150 was the determinant of fiber formation and while P90 had no specific targeting sequences on its own, P90 sequences within P200 were required for correct targeting of P200. An alpha-helix at the N-terminus of P150 was also important for correct targeting of P200, putatively by mediating the interaction between P150 and P90 within the precursor. Second, the membrane binding domain within the NSPs was within the N-terminal ~450 amino acids of P150. P150 is in an exceptionally tight association with membranes. Third, both the N- and C-terminal regions of P150, and specifically long alpha-helices within these regions, are necessary for fiber formation. Fiber formation relied on an intact microtubule network, but neither microtubule repositioning nor dynamic movement along microtubules was required. Additionally, it was shown that microtubules were not necessary in RUBV replication. Finally, P150 fibers were not required for RUBV replication; however, it was shown that the fibers are likely important in formation of cytoplasmic extensions through which a novel system of cell-to-cell transport of viral RNA in the absence of virus particles appears to occur.

Page generated in 0.1584 seconds