Spelling suggestions: "subject:"nontraceable"" "subject:"untraceable""
1 |
Maximal nontraceable graphsSingleton, Joy Elizabeth 30 November 2005 (has links)
A graph G is maximal nontraceable (MNT) (maximal nonhamiltonian (MNH)) if G is not traceable (hamiltonian), i.e. does not contain a hamiltonian path (cycle), but G+xy is traceable
(hamiltonian) for all nonadjacent vertices x and y in G. A graph G is hypohamiltonian if G is
not hamiltonian, but every vertex deleted subgraph G -u of G is hamiltonian. A graph which
is maximal nonhamiltonian and hypohamiltonian is called maximal hypohamiltonian (MHH).
Until recently, not much has appeared in the literature about MNT graphs, although there
is an extensive literature on MNH graphs. In 1998 Zelinka constructed two classes of MNT
graphs and made the conjecture, which he later retracted, that every MNT graph belongs to
one of these classes. We show that there are many different types of MNT graphs that cannot
be constructed by Zelinka's methods.
Although we have not been able to characterize MNT graphs in general, our attempt at
characterizing MNT graphs with a specified number of blocks and cut-vertices enabled us to
construct infinite families of non-Zelinka MNT graphs which have either two or three blocks.
We consider MNT graphs with toughness less than one, obtaining results leading to interesting
constructions of MNT graphs, some based on MHH graphs. One result led us to discover a non-Zelinka MNT graph of smallest order, namely of order 8. We also present examples of MNTgraphs with toughness at least one, including an infinite family of 2-connected,
claw-free graphs.
We find a lower bound for the size of 2-connected MNT graphs of order n. We construct an infinite family of 2-connected cubic MNT graphs of order n, using MHH graphs as building
blocks. We thus find the minimum size of 2-connected MNT graphs for infinitely many values
of n. We also present a construction, based on MHH graphs, of an infinite family of MNT
graphs that are almost cubic. We establish the minimum size of MNT graphs of order n, for
all except 26 values of n, and we present a table of MNT graphs of possible smallest size for
the excluded 26 values of n. / Mathematical Sciences / PHD (MATHEMATICS)
|
2 |
Maximal nontraceable graphsSingleton, Joy Elizabeth 30 November 2005 (has links)
A graph G is maximal nontraceable (MNT) (maximal nonhamiltonian (MNH)) if G is not traceable (hamiltonian), i.e. does not contain a hamiltonian path (cycle), but G+xy is traceable
(hamiltonian) for all nonadjacent vertices x and y in G. A graph G is hypohamiltonian if G is
not hamiltonian, but every vertex deleted subgraph G -u of G is hamiltonian. A graph which
is maximal nonhamiltonian and hypohamiltonian is called maximal hypohamiltonian (MHH).
Until recently, not much has appeared in the literature about MNT graphs, although there
is an extensive literature on MNH graphs. In 1998 Zelinka constructed two classes of MNT
graphs and made the conjecture, which he later retracted, that every MNT graph belongs to
one of these classes. We show that there are many different types of MNT graphs that cannot
be constructed by Zelinka's methods.
Although we have not been able to characterize MNT graphs in general, our attempt at
characterizing MNT graphs with a specified number of blocks and cut-vertices enabled us to
construct infinite families of non-Zelinka MNT graphs which have either two or three blocks.
We consider MNT graphs with toughness less than one, obtaining results leading to interesting
constructions of MNT graphs, some based on MHH graphs. One result led us to discover a non-Zelinka MNT graph of smallest order, namely of order 8. We also present examples of MNTgraphs with toughness at least one, including an infinite family of 2-connected,
claw-free graphs.
We find a lower bound for the size of 2-connected MNT graphs of order n. We construct an infinite family of 2-connected cubic MNT graphs of order n, using MHH graphs as building
blocks. We thus find the minimum size of 2-connected MNT graphs for infinitely many values
of n. We also present a construction, based on MHH graphs, of an infinite family of MNT
graphs that are almost cubic. We establish the minimum size of MNT graphs of order n, for
all except 26 values of n, and we present a table of MNT graphs of possible smallest size for
the excluded 26 values of n. / Mathematical Sciences / PHD (MATHEMATICS)
|
3 |
Local properties of graphsDe Wet, Johan Pieter 10 1900 (has links)
We say a graph is locally P if the induced graph on the neighbourhood of every vertex has the property P. Specically, a graph is locally traceable (LT) or locally hamiltonian (LH) if the induced graph on the neighbourhood of every vertex is traceable or hamiltonian, respectively. A locally locally hamiltonian (L2H) graph is a graph in which the graph induced by the neighbourhood of each vertex is an
LH graph. This concept is generalized to an arbitrary degree of nesting, to make it possible to work with LkH graphs. This thesis focuses on the global cycle properties of LT, LH and LkH graphs. Methods are developed to construct and combine such graphs to create others with desired properties. It is shown that with the exception of three graphs, LT graphs with maximum degree no greater than 5 are fully cycle extendable (and hence hamiltonian), but
the Hamilton cycle problem for LT graphs with maximum degree 6 is NP-complete. Furthermore, the smallest nontraceable LT graph has order 10, and the smallest value of the maximum degree for which LT graphs can be nontraceable is 6. It is also shown that LH graphs with maximum degree 6 are fully cycle extendable, and that there exist nonhamiltonian LH graphs with maximum degree 9 or less for all orders greater than 10. The Hamilton cycle problem is shown to be
NP-complete for LH graphs with maximum degree 9. The construction of r-regular nonhamiltonian graphs is demonstrated, and it is shown that the number of vertices in a longest path in an LH graph can contain a vanishing fraction of the vertices of the graph. NP-completeness of the Hamilton cycle problem for LkH graphs for higher values of k is also investigated. / Mathematical Sciences / D. Phil. (Mathematics)
|
Page generated in 0.0443 seconds