Spelling suggestions: "subject:"nonvolatile memory device"" "subject:"nonvolatiles memory device""
1 |
Fabrications and Characteristics of Nonvolatile Memory Devices with Sn Nanocrystals Embedded in MIS StructureChen, Chao-Yu 26 June 2009 (has links)
Current requirements of nonvolatile memory (NVM) are the high density cells, low-power consumption, high-speed operation and good reliability for the scaling down devices. However, all of the charges stored in the floating gate will leak into the substrate if the tunnel oxide has a leakage path in the conventional NVMs. Therefore, the tunnel oxide thickness is difficult to scale down in terms of charge retention and endurance. The nanocrystal nonvolatile memories are one of promising substitution, because the discrete storage nodes as the charge storage media have been effectively improve data retention under endurance test for the scaling down device. Many methods have been developed recently for the formation of nanocrystals. Generally, most methods need thermal treatment with high temperature and long duration. This procedure will influence thermal budget and throughput in current manufacture technology of semiconductor industry. And supercritical carbon dioxide (SCCO2) has been researched to the passivation of dielectric and reducing the activation energy. The research estimates SCCO2 is potential to form nanocrystals for these reason.
This research is to discuss the feasibility of fabricating nanocrystal NVMs device with low temperature SCCO2. The low melting point metal material Sn is used for the attempts. In order to check if Sn can be used for fabricating nanocrystal NVMs device, the research selects the conventional thermal annealing method first. It uses rapid thermal annealing to improve the crystalline of nanocrystals and reliability of the memory device. Compare to different Sn containment or chemistry and different process, analyze the electric characteristics and materials chemistry.
At last, select the Sn and SiO2 co-sputtering film to try the SCCO2 process and analyze these characteristics as well. Due to the novel technology, many physical mechanism and improvement of properties will be discuss following.
|
2 |
Application and Study of Metal Nanocrystals for Low Power Nonvolatile Memory DeviceWu, Hsing-Hua 29 June 2004 (has links)
In recently years, nonvolatile memory with nanocrystals cell have widely applied to overcome the issue of operation and reliability for conventional floating gate memory. The excellent electrical characteristics of memory device need good endurance, long retention time and small operation voltage. Among numerous memory devices with nanocrystals, the memory device with metal nanocrystals was widely researched. It will be new candidate for flash memory. The advantages of metal nanocrystals has have higher density of states around Fermi level, stronger coupling with conduction channel, wide range of available work functions and smaller energy perturbation due to carrier confinement. So metal nanocrystals can reduce operate voltage, and increase write/erase speed and endurance. Most important of all, we can control the sizes of nanocrystals dot and manufacture at low temperature¡CThis advantage can apply to thin film transistor liquid crystal display; it fabricates driving IC and logical IC on panel for diverseness and adds memory beside switch TFT as image storage to reduce power consumption for portability.
In this thesis, we will discuss metal nanocrystals as memory storage medium. And we can use high temperature oxidation, low temperature annealing with oxygen to form nanocrystals. Besides we analyze the effect of electron storage at metal nanocrystals by means of material and electrical analysis.
|
Page generated in 0.0496 seconds