• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

17x bits elliptic curve scalar multiplication over GF(2M) using optimal normal basis.

January 2001 (has links)
Tang Ko Cheung, Simon. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 89-91). / Abstracts in English and Chinese. / Chapter 1 --- Theory of Optimal Normal Bases --- p.3 / Chapter 1.1 --- Introduction --- p.3 / Chapter 1.2 --- The minimum number of terms --- p.6 / Chapter 1.3 --- Constructions for optimal normal bases --- p.7 / Chapter 1.4 --- Existence of optimal normal bases --- p.10 / Chapter 2 --- Implementing Multiplication in GF(2m) --- p.13 / Chapter 2.1 --- Defining the Galois fields GF(2m) --- p.13 / Chapter 2.2 --- Adding and squaring normal basis numbers in GF(2m) --- p.14 / Chapter 2.3 --- Multiplication formula --- p.15 / Chapter 2.4 --- Construction of Lambda table for Type I ONB in GF(2m) --- p.16 / Chapter 2.5 --- Constructing Lambda table for Type II ONB in GF(2m) --- p.21 / Chapter 2.5.1 --- Equations of the Lambda matrix --- p.21 / Chapter 2.5.2 --- An example of Type IIa ONB --- p.23 / Chapter 2.5.3 --- An example of Type IIb ONB --- p.24 / Chapter 2.5.4 --- Creating the Lambda vectors for Type II ONB --- p.26 / Chapter 2.6 --- Multiplication in practice --- p.28 / Chapter 3 --- Inversion over optimal normal basis --- p.33 / Chapter 3.1 --- A straightforward method --- p.33 / Chapter 3.2 --- High-speed inversion for optimal normal basis --- p.34 / Chapter 3.2.1 --- Using the almost inverse algorithm --- p.34 / Chapter 3.2.2 --- "Faster inversion, preliminary subroutines" --- p.37 / Chapter 3.2.3 --- "Faster inversion, the code" --- p.41 / Chapter 4 --- Elliptic Curve Cryptography over GF(2m) --- p.49 / Chapter 4.1 --- Mathematics of elliptic curves --- p.49 / Chapter 4.2 --- Elliptic Curve Cryptography --- p.52 / Chapter 4.3 --- Elliptic curve discrete log problem --- p.56 / Chapter 4.4 --- Finding good and secure curves --- p.58 / Chapter 4.4.1 --- Avoiding weak curves --- p.58 / Chapter 4.4.2 --- Finding curves of appropriate order --- p.59 / Chapter 5 --- The performance of 17x bit Elliptic Curve Scalar Multiplication --- p.63 / Chapter 5.1 --- Choosing finite fields --- p.63 / Chapter 5.2 --- 17x bit test vectors for onb --- p.65 / Chapter 5.3 --- Testing methodology and sample runs --- p.68 / Chapter 5.4 --- Proposing an elliptic curve discrete log problem for an 178bit curve --- p.72 / Chapter 5.5 --- Results and further explorations --- p.74 / Chapter 6 --- On matrix RSA --- p.77 / Chapter 6.1 --- Introduction --- p.77 / Chapter 6.2 --- 2 by 2 matrix RSA scheme 1 --- p.80 / Chapter 6.3 --- Theorems on matrix powers --- p.80 / Chapter 6.4 --- 2 by 2 matrix RSA scheme 2 --- p.83 / Chapter 6.5 --- 2 by 2 matrix RSA scheme 3 --- p.84 / Chapter 6.6 --- An example and conclusion --- p.85 / Bibliography --- p.91
2

Trace forms and self-dual normal bases in Galois field extensions /

Kang, Dong Seung. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2003. / Typescript (photocopy). Includes bibliographical references (leaves 43-46). Also available on the World Wide Web.

Page generated in 0.2932 seconds