• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extreme Implementations of Wide-Bandgap Semiconductors in Power Electronics

Colmenares, Juan January 2016 (has links)
Wide-bandgap (WBG) semiconductor materials such as silicon carbide (SiC) and gallium-nitride (GaN) allow higher voltage ratings, lower on-state voltage drops, higher switching frequencies, and higher maximum temperatures. All these advantages make them an attractive choice when high-power density and high-efficiency converters are targeted. Two different gate-driver designs for SiC power devices are presented. First, a dual-function gate-driver for a power module populated with SiC junction field-effect transistors that finds a trade-off between fast switching speeds and a low oscillative performance has been presented and experimentally verified. Second, a gate-driver for SiC metal-oxide semiconductor field-effect transistors with a short-circuit protection scheme that is able to protect the converter against short-circuit conditions without compromising the switching performance during normal operation is presented and experimentally validated. The benefits and issues of using parallel-connection as the design strategy for high-efficiency and high-power converters have been presented. In order to evaluate parallel connection, a 312 kVA three-phase SiC inverter with an efficiency of 99.3 % has been designed, built, and experimentally verified. If parallel connection is chosen as design direction, an undesired trade-off between reliability and efficiency is introduced. A reliability analysis has been performed, which has shown that the gate-source voltage stress determines the reliability of the entire system. Decreasing the positive gate-source voltage could increase the reliability without significantly affecting the efficiency. If high-temperature applications are considered, relatively little attention has been paid to passive components for harsh environments. This thesis also addresses high-temperature operation. The high-temperature performance of two different designs of inductors have been tested up to 600_C. Finally, a GaN power field-effect transistor was characterized down to cryogenic temperatures. An 85 % reduction of the on-state resistance was measured at −195_C. Finally, an experimental evaluation of a 1 kW singlephase inverter at low temperatures was performed. A 33 % reduction in losses compared to room temperature was achieved at rated power. / <p>QC 20160922</p>

Page generated in 0.047 seconds